A beam shaping method is presented where a diffractive optical element (DOE) is designed by optimizing the complex mode coefficient weights of a set of Gaussian beam modes. This method is compared with the more standard unidirectional approach. Differential evolution is used for the optimization in both the unidirectional and Gaussian beam mode optimization methods. For the particular transforms carried out, the Gaussian beam mode set optimization (GBMSO) approach achieved more optimal solutions. The GBMSO approach is extended to design DOEs that control the amplitude distribution of a beam at multiple planes, rather than at just a single plane (i.e., the far field).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/JOSAA.27.000350 | DOI Listing |
Rep Pract Oncol Radiother
December 2024
Department of Radiation Oncology, Kagawa University Hospital, Kagawa, Japan.
Sci Rep
January 2025
THz-Photonics Group, Institut für Hochfrequenztechnik, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
Space division multiplexing (SDM) with Hermite Gaussian (HG) modes, for instance, can significantly boost the transmission link capacity. However, SDM is not suitable in existing single mode fiber networks, and in long-distance wireless, microwave, THz or optical links, the far-field beam distribution may present a problem. Recently it has been demonstrated, that time domain HG modes can be employed to enhance the link capacity.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, China.
High intrinsic detection efficiency is as decisive as high energy resolution. Scaling up detector volume has presented great challenges, preventing perovskite semiconductors from reaching sufficient detection efficiency. We report a hole-only virtual-Frisch-grid CsPbBr detector up to 2.
View Article and Find Full Text PDFJ Control Release
December 2024
Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Center for Biomedical Imaging, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China; Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China. Electronic address:
Transarterial radioembolization (TARE) is a recommended locoregional strategy for intermediate hepatocellular carcinoma (HCC), whereas, the effect is insufficient to reverse the immunosuppression tumor microenvironment, and the overall benefits for patients remain to be improved. In this study, a multifunctional microsphere (MS) I-ICT/R848-MS is developed to propose an approach combined with TARE, icaritin (ICT) and immune modulator resiquimod (R848). ICT and iodine-131 (I) radiation can induce immunogenic cell death, which, in combination with R848, will boost dendritic cell (DC) maturation.
View Article and Find Full Text PDFJ Radiat Res
December 2024
Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
Dynamic WaveArc (DWA) is a technique used for continuous, non-coplanar volumetric-modulated arc therapy on the Vero4DRT platform. This study aimed to evaluate the application of single-isocenter DWA (SI-DWA) for treating multiple brain metastases by comparing dose distribution and irradiation time with multi-isocenter DWA (MI-DWA) through retrospective treatment planning. Treatment plans were developed for SI-DWA and MI-DWA in 14 cases with 3-5 brain metastases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!