A description is given of lasers stabilized to components of the (129)I(2) spectrum in the region of the 633-nm laser lines for (3)He-(20)Ne and (3)He-(22)Ne. Relationships between operational characteristics such as power output, peak size, and peak width are shown, along with their relationships to some of the controllable parameters such as excitation level, iodine absorption, and iodine pressure. We found an iodine pressure broadening of about 13 MHz/Torr with a 2.6-MHz zero-pressure intercept. The frequency shift associated with iodine pressure is roughly 2 x 10(-9) nu/Torr to the red. Power broadening and power shifts are small, about a 10% increase in width and about 2 x 10(-11) nu variation in frequency for a fivefold to sixfold increase in power. These lasers exhibit a frequency stability for 10-sec sampling time of about 2 x 10(-12) nu and a resetability of about 1 x 10(-10) nu. The absolute vacuum wavelength for one iodine component has been measured against the (86)Kr standard-(3)He-(20)Ne:(129)I(2), kappa lambda = 632 991.2670 +/- 0.0009 pm. The wavelengths of several other iodine components have been determined by measuring the frequency difference between them and the (129)I(2), kappa component. Among these are (3)He-(20)Ne:(129)I(2), i lambda = 632 990.0742 +/- 0.0009 pm: and (3)He-(20)Ne:(127)I(2), i lambda = 632 991.3954 +/-0.0009 pm. These results were obtained using the Rowley-Hamon model for asymmetry in the krypton line and assume that the defined value for the standard is axssociated with the center of gravity of the line profile. The indicated uncertainties are statistical. No allowance has been included for imperfect realization of the krypton standard or for uncertainty in the asymmetry model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.12.002927 | DOI Listing |
Se Pu
February 2025
CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Chemical modifications are widely used in research fields such as quantitative proteomics and interaction analyses. Chemical-modification targets can be roughly divided into four categories, including those that integrate isotope labels for quantification purposes, probe the structures of proteins through covalent labeling or cross-linking, incorporate labels to improve the ionization or dissociation of characteristic peptides in complex mixtures, and affinity-enrich various poorly abundant protein translational modifications (PTMs). A chemical modification reaction needs to be simple and efficient for use in proteomics analysis, and should be performed without any complicated process for preparing the labeling reagent.
View Article and Find Full Text PDFJ Vet Intern Med
January 2025
Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
Background: Hyperthyroid cats that are azotemic and hypothyroid after surgical or medical treatment have poor outcomes, and supplementation with levothyroxine (LT4) improves survival. However, the effect of LT4 supplementation on survival of nonazotemic, hypothyroid radioiodine (RI)-treated hyperthyroid cats is unknown.
Hypothesis: Radioiodine treated hyperthyroid cats with iatrogenic hypothyroidism or azotemia have shorter survival times than euthyroid, nonazotemic cats and supplementation of LT4 improves survival times of hypothyroid cats.
ACS Appl Energy Mater
January 2025
Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands.
The decoupled power and energy output of a redox flow battery (RFB) offers a key advantage in long-duration energy storage, crucial for a successful energy transition. Iodide/iodine and hydrogen/water, owing to their fast reaction kinetics, benign nature, and high solubility, provide promising battery chemistry. However, H-I RFBs suffer from low open circuit potentials, iodine crossover, and their multiphase nature.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Endocrinology and Metabolism, Faculty of Medicine, Recep Tayyip Erdogan University, Rize 53100, Türkiye.
There exist three principal treatment modalities employed in the management of hyperthyroidism attributable to excessive hormone secretion by the thyroid gland: antithyroid pharmacotherapy, surgical intervention, and radioactive iodine (RAI) therapy. Surgical intervention is typically indicated for markedly enlarged thyroid glands that exert pressure on the trachea. The objective of this investigation was to ascertain the influence of RAI on thyroid volume and tracheal diameter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!