A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cch1 restores intracellular Ca2+ in fungal cells during endoplasmic reticulum stress. | LitMetric

Cch1 restores intracellular Ca2+ in fungal cells during endoplasmic reticulum stress.

J Biol Chem

Department of Pharmacology, School of Medicine, University of California, Davis, California 95616, USA.

Published: April 2010

Pathogens endure and proliferate during infection by exquisitely coping with the many stresses imposed by the host to prevent pathogen survival. Recent evidence has shown that fungal pathogens and yeast respond to insults to the endoplasmic reticulum (ER) by initiating Ca(2+) influx across their plasma membrane. Although the high affinity Ca(2+) channel, Cch1, and its subunit Mid1, have been suggested as the protein complex responsible for mediating Ca(2+) influx, a direct demonstration of the gating mechanism of the Cch1 channel remains elusive. In this first mechanistic study of Cch1 channel activity we show that the Cch1 channel from the model human fungal pathogen, Cryptococcus neoformans, is directly activated by the depletion of intracellular Ca(2+) stores. Electrophysiological analysis revealed that agents that enable ER Ca(2+) store depletion promote the development of whole cell inward Ca(2+) currents through Cch1 that are effectively blocked by La(3+) and dependent on the presence of Mid1. Cch1 is permeable to both Ca(2+) and Ba(2+); however, unexpectedly, in contrast to Ca(2+) currents, Ba(2+) currents are steeply voltage-dependent. Cch1 maintains a strong Ca(2+) selectivity even in the presence of high concentrations of monovalent ions. Single channel analysis indicated that Cch1 channel conductance is small, similar to that reported for the Ca(2+) current I(CRAC). This study demonstrates that Cch1 functions as a store-operated Ca(2+)-selective channel that is gated by intracellular Ca(2+) depletion. The inability of cryptococcal cells that lacked the Cch1-Mid1 channel to survive ER stress suggests that Cch1 and its co-regulator, Mid1, are critical players in the restoration of Ca(2+) homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2856300PMC
http://dx.doi.org/10.1074/jbc.M109.056218DOI Listing

Publication Analysis

Top Keywords

cch1 channel
16
ca2+
13
intracellular ca2+
12
cch1
11
endoplasmic reticulum
8
ca2+ influx
8
channel
8
ca2+ currents
8
cch1 restores
4
restores intracellular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!