A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Coclustering for cross-subject fiber tract analysis through diffusion tensor imaging. | LitMetric

Coclustering for cross-subject fiber tract analysis through diffusion tensor imaging.

IEEE Trans Inf Technol Biomed

Department of Computer Science, Wayne State University, Detroit, MI 48202, USA.

Published: March 2010

One of the fundamental goals of computational neuroscience is the study of anatomical features that reflect the functional organization of the brain. The study of physical associations between neuronal structures and the examination of brain activity in vivo have given rise to the concept of anatomical and functional connectivity, which has been invaluable for our understanding of brain mechanisms and their plasticity during development. However, at present, there is no robust and accurate computational framework for the quantitative assessment of cortical connectivity patterns. In this paper, we present a quantitative analysis and modeling tool that is able to characterize anatomical connectivity patterns based on a newly developed coclustering algorithm, termed the business model-based coclustering algorithm (BCA). We apply BCA to diffusion tensor imaging (DTI) data in order to provide an automated and reproducible assessment of the connectivity patterns between different cortical areas in human brains. BCA not only partitions the cortical mantel into well-defined clusters, but also maximizes the connectivity strength between these clusters. Moreover, BCA is computationally robust and allows both outlier detection as well as parameter-independent determination of the number of clusters. Our coclustering results have showed good performance of BCA in identifying major white matter fiber bundles in human brains and facilitate the detection of abnormal connectivity patterns in patients suffering from various neurological diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TITB.2010.2040286DOI Listing

Publication Analysis

Top Keywords

connectivity patterns
16
diffusion tensor
8
tensor imaging
8
coclustering algorithm
8
human brains
8
connectivity
6
bca
5
coclustering
4
coclustering cross-subject
4
cross-subject fiber
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!