This paper describes an improved algorithm for the numerical solution to the support vector machine (SVM) classification problem for all values of the regularization parameter C . The algorithm is motivated by the work of Hastie and follows the main idea of tracking the optimality conditions of the SVM solution for ascending value of C . It differs from Hastie's approach in that the tracked path is not assumed to be 1-D. Instead, a multidimensional feasible space for the optimality condition is used to solve the tracking problem. Such a treatment allows the algorithm to properly handle data sets which Hastie's approach fails. These data sets are characterized by the presence of linearly dependent points (in the kernel space), duplicate points, or nearly duplicate points. Such data sets are quite common among many real-world data, especially those with nominal features. Other contributions of this paper include a unifying formulation of the tracking process in the form of a linear programming problem, update formula for the linear programs, considerations that guard against accumulation of errors resulting from the use of incremental updates, and routines to speed up the algorithm. The algorithm is implemented under the Matlab environment and is available for download. Experiments with several data sets including data set having up to several thousand data points are reported.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNN.2009.2039000 | DOI Listing |
Eur J Nucl Med Mol Imaging
January 2025
The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
Purpose: The study explores the role of multimodal imaging techniques, such as [F]F-PSMA-1007 PET/CT and multiparametric MRI (mpMRI), in predicting the ISUP (International Society of Urological Pathology) grading of prostate cancer. The goal is to enhance diagnostic accuracy and improve clinical decision-making by integrating these advanced imaging modalities with clinical variables. In particular, the study investigates the application of few-shot learning to address the challenge of limited data in prostate cancer imaging, which is often a common issue in medical research.
View Article and Find Full Text PDFSci Data
January 2025
State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
The grassland caterpillars are the most damaging insect pests to the alpine meadow of the Qinghai-Tibetan Plateau in China. In this study, we present a genome assembly of one grassland caterpillar Gynaephora qinghaiensis by using Oxford Nanopore long-read and BGI short-read sequencing. The genome assembly of 861.
View Article and Find Full Text PDFSci Data
January 2025
School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel.
The question of what processes can take place without conscious awareness has generated extensive research. Yet there is still no consensus regarding the extent and scope of unconscious processing, and past research abounds with conflicting results. A possible reason for this lack of consensus is the diversity of methods in the field, as the methodological choices might influence the results.
View Article and Find Full Text PDFSci Data
January 2025
Department of Engineering Technology, University of Houston, Houston, TX, USA.
Functional near-infrared spectroscopy (fNIRS) is an increasingly popular neuroimaging technique that measures cortical hemodynamic activity in a non-invasive and portable fashion. Although the fNIRS community has been successful in disseminating open-source processing tools and a standard file format (SNIRF), reproducible research and sharing of fNIRS data amongst researchers has been hindered by a lack of standards and clarity over how study data should be organized and stored. This problem is not new in neuroimaging, and it became evident years ago with the proliferation of publicly available neuroimaging datasets.
View Article and Find Full Text PDFSci Data
January 2025
University of South Dakota, Department of Biology, Vermillion, SD, 57069, USA.
Freshwater management and research frequently rely on trophic data to manage freshwater fishes, yet it is difficult to perform a simple search of dietary information for any one species. FishBase represents the largest effort to organize freshwater dietary data into a singular, navigable dataset. Nonetheless, FishBase excludes a large portion of the ecological literature because it was developed before the creation of most modern scientific search engines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!