Treatment-induced motor complications represent a major clinical problem in Parkinson's disease (PD). Pharmacological dopamine (DA) replacement with l-dopa causes motor fluctuations and abnormal involuntary movements (dyskinesia) in the vast majority of the patients. Intrastriatal grafts of embryonic dopaminergic neurons can cause dyskinesia too, as shown by clinical trials of neural transplantation in PD. Animals models of these complications can be produced in rats and mice in which the nigrostriatal DA pathway has been severely damaged. Rodent models allow investigators to explore mechanistic hypotheses at the cellular and molecular level. Moreover, the rat model of L-dopa-induced abnormal involuntary movements shows both face validity and predictive validity relative to the corresponding disorder in primates, and provides a cost effective tool to evaluate novel antidyskinetic interventions. This article reviews the strategies that have been used to reproduce different motor complications of PD treatment in rodents, and comments on their range of applicability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S1353-8020(09)70828-4 | DOI Listing |
Cureus
December 2024
Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, JPN.
Traumatic cerebrospinal fluid (CSF) leakage from skull base fractures increases the risk of bacterial meningitis, which is associated with a high mortality rate in adults, and commonly results in severe neurological outcomes. While most cases of CSF leakage occur within three months post-injury and generally resolve spontaneously, delayed-onset meningitis remains a challenging complication. Herein, we report a rare case of severe bacterial meningitis with an intraventricular abscess one year following a frontal skull base fracture, despite no CSF leak.
View Article and Find Full Text PDFCureus
December 2024
Orthopedic Department, King Fahad Medical City, Riyadh, SAU.
Posterior sternoclavicular joint (SCJ) dislocation is a rare but potentially life-threatening injury due to its proximity to critical mediastinal structures. Early diagnosis and prompt management are essential to prevent severe complications such as vascular or respiratory compromise. We report a case of a 23-year-old male who presented to our emergency department five days after a high-energy motor vehicle accident with isolated, closed posterior dislocation of the SCJ.
View Article and Find Full Text PDFFront Neurol
December 2024
Sense4Care, Cornellà de Llobregat, Spain.
Parkinson's disease (PD) is a neurodegenerative disorder that significantly impacts patients' quality of life. Managing PD requires accurate assessment of motor and non-motor symptoms, often complicated by the subjectivity in symptom reporting and the limited availability of neurologists. To address these challenges, commercial wearable devices have emerged to continuously monitor PD symptoms outside the clinical setting.
View Article and Find Full Text PDFBMC Neurol
January 2025
Department of Neurology, School of Medicine, Immunogenetic Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
Introduction: Cerebral ischemic strokes cause brain damage, primarily through inflammatory factors. One of the regions most affected by middle cerebral artery occlusion (MCAO) is the hippocampus, specifically the CA1 area, which is highly susceptible to ischemia. Previous studies have demonstrated the anti-inflammatory properties of quercetin.
View Article and Find Full Text PDFBackground: Delayed reactions to hyaluronic acid (HA) fillers have been reported following various immunologic and infectious triggers.
Aim: Herein, we describe cases of delayed immunologic reactions (DIRs) following HA-soft tissue augmentation fillers precipitated by triggers not previously described in the literature. Patients: Case 1 describes a 57-year-old female with DIR to HA-filler following a motor vehicle accident in the marionette lines and nasolabial folds.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!