A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Haloperidol disrupts lipid rafts and impairs insulin signaling in SH-SY5Y cells. | LitMetric

Haloperidol exerts its therapeutic effects basically by acting on dopamine receptors. We previously reported that haloperidol inhibits cholesterol biosynthesis in cultured cells. In the present work we investigated its effects on lipid-raft composition and functionality. In both neuroblastoma SH-SY5Y and promyelocytic HL-60 human cell lines, haloperidol inhibited cholesterol biosynthesis resulting in a decrease of the cell cholesterol content and the accumulation of different sterol intermediates (7-dehydrocholesterol, zymostenol and cholesta-8,14-dien-3beta-ol) depending on the dose of the drug. As a consequence, the cholesterol content in lipid rafts was greatly reduced, and several pre-cholesterol sterols, particularly cholesta-8,14-dien-3beta-ol, were incorporated into the cell membrane. This was accompanied by the disruption of lipid rafts, with redistribution of flotillin-1 and Fyn and the impairment of insulin-Akt signaling. Supplementing the medium with free cholesterol abrogated the effects of haloperidol on lipid-raft composition and functionality. LDL (low-density lipoprotein), a physiological vehicle of cholesterol in plasma, was much less effective in preventing the effects of haloperidol, which is attributed to the drug's inhibition of intracellular vesicular trafficking. These effects on cellular cholesterol homeostasis that ultimately result in the alteration of lipid-raft-dependent insulin signaling action may underlie some of the metabolic effects of this widely used antipsychotic.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2010.01.051DOI Listing

Publication Analysis

Top Keywords

lipid rafts
12
insulin signaling
8
cholesterol biosynthesis
8
lipid-raft composition
8
composition functionality
8
cholesterol content
8
effects haloperidol
8
cholesterol
7
haloperidol
6
effects
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!