The function of mammalian ocular lens is to provide a sharp image to the retina. Accordingly, the lens needs to be transparent and minimize light scattering. To do so the lens fiber cells first loose intracellular organelles, organize the cytoplasm and arrange the fiber cell membranes. Because the fiber cells are metabolically inactive, the plasma membrane becomes the only cellular organelle and consequently, the phase behavior of these membranes determines the physiological state of the lens. Previous studies have shown that lipids extracted from the nuclear and cortical region of human lens show a temperature-induced phase transition close to the body temperature. Yet, the physiological function of this phase transition is not known, and even the presence of the phase transition in intact lenses is unknown. Positron annihilation lifetime spectroscopy (PALS) was used to characterize the sub-nanometer-sized local structure of intact porcine lens and these studies were complemented with differential scanning calorimeter and mass spectrometric analysis in extracted porcine lens lipids. Using PALS, we present evidence for the presence of a temperature-dependent structural transition centered at 35.5 degrees C in-situ in clear extracted porcine lenses. Further studies employing extracted lens lipids and purified egg-yolk sphingomyelin and cholesterol mixtures suggest that the nano-scale transition emerges from the phase behavior of lens lipids. Based on our results, PALS seems to be a viable method for gaining additional information on biological tissues, especially since it enables non-destructive studies on intact tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2010.01.011DOI Listing

Publication Analysis

Top Keywords

phase transition
12
lens lipids
12
lens
9
structural transition
8
fiber cells
8
phase behavior
8
porcine lens
8
extracted porcine
8
transition
6
phase
5

Similar Publications

Metastable state preceding shear zone instability: Implications for earthquake-accelerated landslides and dynamic triggering.

Proc Natl Acad Sci U S A

January 2025

Institut Langevin, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Université Paris Sciences & Lettres, CNRS, Paris 7587, France.

Understanding the dynamic response of granular shear zones under cyclic loading is fundamental to elucidating the mechanisms triggering earthquake-induced landslides, with implications for broader fields such as seismology and granular physics. Existing prediction methods struggle to accurately predict many experimental and in situ landslide observations due to inadequate consideration of the underlying physical mechanisms. The mechanisms that influence landslide dynamic triggering, a transition from static (or extremely slow creeping) to rapid runout, remain elusive.

View Article and Find Full Text PDF

Natural killer (NK) cells have proven to be safe and effective immunotherapies, associated with favorable treatment responses in chronic myeloid leukemia (CML). Augmenting NK cell function with oncological drugs could improve NK cell-based immunotherapies. Here, we used a high-throughput drug screen consisting of over 500 small-molecule compounds to systematically evaluate the effects of oncological drugs on primary NK cells against CML cells.

View Article and Find Full Text PDF

Excavation of underground engineering structures involving deeply buried water-rich soft rocks is generally carried out using the artificial freezing method. A series of undrained uniaxial and triaxial shear and creep tests were conducted on soft rocks under different confining pressures (0, 0.2, 0.

View Article and Find Full Text PDF

Objective: Attention forms the foundation for the formation of situation awareness. Low situation awareness can lead to driving performance decline, which can be dangerous in driving. The goal of this study is to investigate how different types of pre-takeover tasks, involving cognitive, visual and physical resources engagement, as well as individual attentional function, affect driver's attention restoration in conditionally automated driving.

View Article and Find Full Text PDF

Spin Glass State and Griffiths Phase in van der Waals Ferromagnetic Material FeGeTe.

Nanomaterials (Basel)

December 2024

School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China.

The discovery of two-dimensional (2D) van der Waals ferromagnetic materials opens up new avenues for making devices with high information storage density, ultra-fast response, high integration, and low power consumption. FeGeTe has attracted much attention because of its ferromagnetic transition temperature near room temperature. However, the investigation of its phase transition is rare until now.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!