Stress stability testing and forced degradation were used to determine the stability of enalapril maleate (EM) and to find a degradation pathway for the drug. The degradation impurities, formed under different stressed conditions, were investigated by HPLC and UPLC-MS methods. HPLC analysis showed several degradation impurities of which several were already determined, but on oxidation in the presence of magnesium monoperoxyphthalate (MMPP) several impurities of EM were observed which were not yet characterized. The HPLC methods for determination of EM were validated. The linearity of HPLC method was established in the concentration range between 0.5 and 10 microg/mL with correlation coefficient greater than 0.99. The LOD of EM was 0.2 microg/mL and LOQ was 0.5 microg/mL. The validated HPLC method was used to determine the degradation impurities in samples after stress stability testing and forced degradation of EM. In order to identify new degradation impurities of EM after forced degradation UPLC-MS/MS(n), Orbitrap has been used. It was found that new impurities are oxidation products: (S)-1-((S)-2-((S)-1-ethoxy-4-(o,m,p-hydroxyphenyl)-1-oxobutan-2-ylamino)propanoyl)pyrrolidine-2-carboxylic acid, (2S)-1-((2S)-2-((2S)-1-ethoxy-4-hydroxy-1-oxo-4-phenylbutan-2-ylamino)propanoyl)pyrrolidine-2-carboxylic acid. (S)-2-(3-phenylpropylamino)-1-(pyrrolidin-1-yl)propan-1-one was identified as a new degradation impurity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2009.12.018DOI Listing

Publication Analysis

Top Keywords

degradation impurities
16
forced degradation
12
degradation
9
enalapril maleate
8
oxidation presence
8
presence magnesium
8
magnesium monoperoxyphthalate
8
stress stability
8
stability testing
8
testing forced
8

Similar Publications

Observation of Ɛ-AlKeggin-Oligonucleotide Complexes in Analytical Sample Solutions.

J Pharm Sci

January 2025

Ionis Pharmaceuticals, Inc., 2855 Gazelle Ct., Carlsbad, CA 92010. Electronic address:

Complexes formed between aluminum cluster molecules that adopt a Ɛ-Al-Keggin structure and antisense oligonucleotides were observed as new impurity peaks during drug product stability testing. The Ɛ-Al-Keggin molecules were determined to be artifacts of the analysis, originating from contact between antisense oligonucleotide drug product solution and aluminum weigh boats used to prepare the analytical sample solutions The presence of the Ɛ-Al-Keggin molecules was confirmed through synthesis of the Keggin molecule through an established route and subsequent spiking studies. Binding affinity studies revealed that the Ɛ-Al-Keggin bound to oligonucleotide sequences of various lengths (10 to 20 bases) and base compositions, though there is some evidence for preferential binding to 5-methylcytosine-containing sequences.

View Article and Find Full Text PDF

Background: Selpercatinib, a selective RET kinase inhibitor, is approved for treating various cancers with RET gene mutations such as RET-rearranged thyroid cancer and non-small cell lung cancer. The presence of process-related and degradation impurities in its active pharmaceutical ingredient (API) can significantly affect its safety and effectiveness. However, research on detecting these impurities is limited.

View Article and Find Full Text PDF

Background: Peritoneal dialysis (PD) is an important modality of renal replacement therapy (RRT). Peritonitis and ultrafiltration failure are complications that have a long-term impact on PD patients. Besides touch contamination, procedural errors and clinical reasons of peritonitis, contaminants, and constituents of peritoneal dialysis fluids (PDFs) have been implicated in causing peritonitis and ultrafiltration failure.

View Article and Find Full Text PDF

We present an investigation into the effects of high-energy proton damage on charge trapping in germanium cross-strip detectors with the goal of accomplishing three important measurements. First, we calibrated and characterized the spectral resolution of a spare COSI-balloon detector in order to determine the effects of intrinsic trapping, finding that electron trapping due to impurities dominates over hole trapping in the undamaged detector. Second, we performed two rounds of proton irradiation of the detector in order to quantify, for the first time, the rate at which charge traps are produced by proton irradiation.

View Article and Find Full Text PDF

Achieving Near Infrared Photodegradation by the Synergistic Effect of Z-Scheme Heterojunction and Antenna of Rare Earth Single Atoms.

Small

January 2025

Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China.

Near-infrared light response catalysts have received great attention in renewable solar energy conversion, energy production, and environmental purification. Here, near-infrared photodegradation is successfully achieved in rare earth single atom anchored NaYF@g-CN heterojunctions by the synergistic effect of Z-scheme heterojunction and antenna of rare earth single atoms. The UV-vis light emitted by Tm can not only be directly absorbed by g-CN to generate electron-hole pairs, realizing efficient energy transfer, but also be absorbed by NaYF substrate, and generating photo-generated electrons at its impurity level, transferring the active charge to the valence band of g-CN, forming a Z-scheme heterojunction and further improving the photocatalytic efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!