To fight bone diseases characterized by poor bone quality like osteoporosis and osteoarthritis, as well as in reconstructive surgery, there is a need for a new generation of implantable biomaterials. It is envisioned that implant surfaces can be improved by mimicking the natural extracellular matrix of bone tissue, which is highly a organized nano-composite. In this study we aimed to get a better understanding of osteoblast response to nanometric grooved substrates varying in height, width and spacing. A throughput screening biochip was created using electron beam lithography. Subsequently, uniform large-scale nanogrooved substrates were created using laser interference lithography and reactive ion etching. Results showed that osteoblasts were responsive to nanopatterns down to 75 nm in width and 33nm in depth. SEM and TEM studies showed that an osteoblast-driven calcium phosphate (CaP) mineralization was observed to follow the surface pattern dimensions. Strikingly, aligned mineralization was found on even smaller nanopatterns of 50 nm in width and 17 nm in depth. A single cell based approach for real time PCR demonstrated that osteoblast-specific gene expression was increased on nanopatterns relative to a smooth control. The results indicate that nanogrooves can be a very promising tool to direct the bone response at the interface between an implant and the bone tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2010.01.034DOI Listing

Publication Analysis

Top Keywords

grooved substrates
8
extracellular matrix
8
bone tissue
8
nanopatterns width
8
bone
5
influence nanoscale
4
nanoscale grooved
4
substrates osteoblast
4
osteoblast behavior
4
behavior extracellular
4

Similar Publications

Bilayer graphene ribbons (GRs) hold great promise for the fabrication of next-generation nanodevices, thanks to unparalleled electronic properties, especially the tunable bandgap in association with twist angle, ribbon width, edge structure, and interlayer coupling. A common challenge in manufacturing bilayer GRs via templated chemical vapor deposition (CVD) approach is uncontrollable dewetting of micro- and nano-scaled patterned metal substrates. Herein, a confined CVD synthetic strategy of bilayer GR arrays is proposed, by utilizing the bifunctional Ni as a buffered adhesion layer to regulate the anisotropic dewetting of metal film in the V-groove and as a carbon-dissolution regulated metal to initiate the bilayer nucleation.

View Article and Find Full Text PDF

Apurinic/apyrimidinic (AP) endonucleases are key enzymes responsible for the repair of base-less nucleotides generated by spontaneous hydrolysis or as DNA repair intermediates. APE1, the major human AP endonuclease, is a druggable target in cancer and its biological function has been extensively studied. However, the molecular features responsible for its substrate specificity are poorly understood.

View Article and Find Full Text PDF

Carrageenans have attracted increasing research interests in recent decades for their various physicochemical and physiological properties. Random endo-acting carrageenases are promising tools for tailoring the molecular weight of carrageenan and preparing a series of carrageenan oligosaccharides. Although the processive ι-carrageenases in the GH82 family have been widely investigated, the random ι-carrageenase has not been reported.

View Article and Find Full Text PDF

GaAs Solar Cells Grown Directly on V-Groove Si Substrates.

ACS Appl Mater Interfaces

January 2025

National Renewable Energy Laboratory, Golden, Colorado 80401, United States.

The direct epitaxial growth of high-quality III-V semiconductors on Si is a challenging materials science problem with a number of applications in optoelectronic devices, such as solar cells and on-chip lasers. We report the reduction of dislocation density in GaAs solar cells grown directly on nanopatterned V-groove Si substrates by metal-organic vapor-phase epitaxy. Starting from a template of GaP on V-groove Si, we achieved a low threading dislocation density (TDD) of 3 × 10 cm in the GaAs by performing thermal cycle annealing of the GaAs followed by growth of InGaAs dislocation filter layers.

View Article and Find Full Text PDF

The outer membrane of Gram-negative bacteria provides a formidable barrier, essential for both pathogenesis and antimicrobial resistance. Biogenesis of this complex structure necessitates the transport of phospholipids across the cell envelope. Recently, YhdP was implicated as a major protagonist in the trafficking of inner membrane phospholipids to the outer membrane; however the molecular mechanism of YhdP mediated transport remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!