HIV-infected individuals who abuse opiates show a faster progression to AIDS and higher incidence of encephalitis. The HIV-1 proteins Tat and gp120 have been shown to cause neurodegenerative changes either in vitro or when injected or expressed in the CNS, and we have shown that opiate drugs can exacerbate neurotoxic effects in the striatum through direct actions on pharmacologically discrete subpopulations of mu-opioid receptor-expressing astroglia. Opiate coexposure also significantly enhances release of specific inflammatory mediators by astroglia from the striatum, and we theorize that astroglial reactivity may underlie aspects of HIV neuropathology. To determine whether astroglia from different regions of the central nervous system have distinct, intrinsic responses to HIV-1 proteins and opiates, we used multiplex suspension array analyses to define and compare the inflammatory signature of cytokines released by murine astrocytes grown from cerebral cortex, cerebellum, and spinal cord. Results demonstrate significant regional differences in baseline secretion patterns, and in responses to viral proteins. Of importance for the disease process, astrocytes from all regions have very limited inflammatory response to gp120 protein, as compared to Tat protein, either in the presence or absence of morphine. Overall, the chemokine/cytokine release is higher from spinal cord and cortical astroglia than from cerebellar astroglia, paralleling the relatively low incidence of HIV-related neuropathology in the cerebellum.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2856623 | PMC |
http://dx.doi.org/10.1021/pr900926n | DOI Listing |
Front Immunol
January 2025
Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands.
Introduction: Bryostatin-1, a potent agonist of the protein kinase C, has been studied for HIV and cancer therapies. In HIV research, it has shown anti-HIV effects during acute infection and reactivation of latent HIV in chronic infection. As effective CD8+ T cell responses are essential for eliminating reactivated virus and achieving a cure, it is important to investigate how bryostatin-1 affects HIV-specific CD8+ T cells.
View Article and Find Full Text PDFJ Int AIDS Soc
February 2025
AP-HP, Hôpital Bichat Claude Bernard, Service de Virologie, INSERM, IAME, Paris, France.
Introduction: Molecular surveillance is an important tool for detecting chains of transmission and controlling the HIV epidemic. This can also improve our knowledge of molecular and epidemiological factors for the optimization of prevention. Our objective was to illustrate this by studying the molecular and epidemiological evolution of the cluster including the new circulating recombinant form (CRF) 94_cpx of HIV-1, detected in 2017 and targeted by preventive actions in 2018.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America.
Retroviruses can be detected by the innate immune sensor cyclic GMP-AMP synthase (cGAS), which recognizes reverse-transcribed DNA and activates an antiviral response. However, the extent to which HIV-1 shields its genome from cGAS recognition remains unclear. To study this process in mechanistic detail, we reconstituted reverse transcription, genome release, and innate immune sensing of HIV-1 in a cell-free system.
View Article and Find Full Text PDFViruses
January 2025
Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz (IOC), FIOCRUZ, Rio de Janeiro 21040-360, Brazil.
Background: Severe COVID-19 presents a variety of clinical manifestations associated with inflammatory profiles. People living with HIV (PLWH) could face a higher risk of hospitalization and mortality from COVID-19, depending on their immunosuppression levels. This study describes inflammatory markers in COVID-19 clinical outcomes with and without HIV infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!