Over the past decades, hydrogels have been widely studied as biomaterials for various biomedical applications like implants, drugs and cell delivery carriers because of their high biocompatibility, high water contents and excellent permeability for nutrients and metabolites. Especially, in situ forming hydrogel systems have received much attention because of their easy application based on minimal invasive techniques. Chemical cross-linking systems fabricated using enzymatic reactions have various advantages, such as high biocompatibility and easy control of reaction rates under mild condition. In this study, we report enzyme-triggered injectable and biodegradable hydrogels composed of Tetronic-tyramine conjugates. The Tetronic-tyramine conjugates were synthesized by first reacting Tetronic with succinic anhydride and subsequent conjugation with tyramine using DCC/NHS as coupling reagents. The chemical structure of Tetronic-succinic anhydride-tyramine (Tet-SA-TA) copolymer was characterized by (1)H NMR and FTIR. The hydrogels were prepared from a Tet-SA-TA solution above 3 wt % in the presence of horseradish peroxidase (HRP) and H(2)O(2) under physiological conditions. Their mechanical property, gelation time, swelling ratio and degradation time were evaluated at different polymer, HRP, and H(2)O(2) concentrations. In addition, a cyto-compatibility study was performed using the MC3T3-E1 cell line. In the cytotoxicity test, it was clear that the Tet-SA-TA hydrogel had no apparent cytotoxicity except for the hydrogel formed with 0.25 wt % H(2)O(2) due to the cytotoxicity of residual H(2)O(2). In conclusion, the obtained results demonstrated that the Tet-SA-TA hydrogel has great potential for use as an injectable scaffold for tissue engineering and as a drug carrier for controlled drug delivery systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm9012875 | DOI Listing |
Chem Sci
December 2024
The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology Wuhan 430081 China.
Alkali activation is a common method to prepare commercial porous carbon. In a mixed alkali activation system, the role of each individual alkali has generally been assumed to be the same as in a single alkali activation system, and the low corrosiveness of weak alkalis has mainly been emphasized. However, the intrinsic roles of the individual alkalis should be understood in detail and redefined to illuminate the activation pathways from the perspective of internal chemical reactions rather than corrosiveness.
View Article and Find Full Text PDFBiofilm
June 2025
Infectious Bacterial Diseases Research Unit, USDA Agriculture Research Service, National Animal Disease Center, Ames, IA, USA.
The genus comprises unique atypical spirochete bacteria that includes the etiological agent of leptospirosis, a globally important zoonosis. Biofilms are microecosystems composed of microorganisms embedded in a self-produced matrix that offers protection against hostile factors. Leptospires form biofilms in rice fields and unsanitary urban areas, and while colonizing rodent kidneys.
View Article and Find Full Text PDFACS Omega
December 2024
The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, Anhui, Hefei 230000, China.
The challenge of healing diabetic skin wounds presents a significant hurdle in clinical practice and scientific research. In response to this pressing concern, we have developed a temperature-sensitive, in situ-forming hydrogel comprising poly(-isopropylacrylamide---butyl acrylate) -poly(ethylene glycol) -poly(-isopropylacrylamide--butyl acrylate) copolymer, denoted as PEP, in combination with zinc oxide nanoparticles, forming what we refer to as PEP-ZnO hydrogel. The antimicrobial properties of the PEP-ZnO hydrogel against methicillin-resistant were rigorously assessed by using the bacteriostatic banding method.
View Article and Find Full Text PDFAnal Methods
January 2025
Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
In this study, a mimetic fluorescence nanosensor based on a molecularly imprinted polymer was designed for the detection of amygdalin (AMG). Its characteristics and functional performance were investigated and recorded using ATR-FTIR, AFM and porosity tests. This designed sensor is considered superior to other reported techniques due to its low material consumption during both manufacturing and operation as well as its low cost and desirable performance characteristics, such as short response time, high stability and an appropriate detection limit.
View Article and Find Full Text PDFChemistry
January 2025
Zelinsky Institute of Organic Chemistry of the Russian Academy of Science, Laboratory for Studies of Homolytic Reactions, Leninsky prospekt 47, 119991, Moscow, RUSSIAN FEDERATION.
The electrochemically mediated cyanation/annulation process with in situ cyanide ion generation from NH4SCN and multi-step oxidative construction of CN-functionalized heterocycles from easily available α-amino esters and pyridine-2-carbaldehydes has been discovered. Depending on the nature of the α-amino ester, 1-cyano-imidazo[1,5-a]pyridine-3-carboxylates, 3-alkyl- and 3-aryl-imidazo[1,5-a]pyridines-1-carbonitriles, and the first reported 4-oxo-4H-pyrido[1,2-a]pyrazine-1-carbonitriles were obtained. The electrosynthesis is carried out in an undivided electrochemical cell under constant current conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!