A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Achieving highly effective non-biofouling performance for polypropylene membranes modified by UV-induced surface graft polymerization of two oppositely charged monomers. | LitMetric

Achieving highly effective non-biofouling performance for polypropylene membranes modified by UV-induced surface graft polymerization of two oppositely charged monomers.

J Phys Chem B

Division of Environmental Science and Engineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore.

Published: February 2010

A major problem in membrane technology for applications such as wastewater treatment or desalination is often the loss of membrane permeability due to biofouling initiated from protein adsorption and biofilm formation on the membrane surface. In this study, we developed a relatively simple and yet versatile approach to prepare polypropylene (PP) membrane with highly effective non-biofouling performance. Copolymer brushes were grafted to the surface of PP membrane through UV-induced polymerization of two oppositely charged monomers, i.e., [2-(methacryloyloxy)ethyl]trimethylammonium chloride (TM) and 3-sulfopropyl methacrylate potassium salt (SA), with varying TM:SA molar ratios. Surface analysis with scanning electron microscope (SEM) clearly showed the grafted copolymer brushes on the membrane surfaces and that with X-ray photoelectron spectroscope (XPS) revealed a similar TM:SA ratio of the grafted copolymer brushes to that of the monomer solution used for the polymerization. Water contact angle measurements indicated that the hydrophilicity of the membrane surfaces was remarkably improved by the grafting of the TM/SA copolymer brushes, with the lowest water contact angle of 27 degrees being achieved at the TM:SA ratio of around 1:1. Experiments for antiprotein adsorption with bovine serum album (BSA) and lysozyme (LYZ) and antibiofilm formation with Escherichia coli (E. coli) demonstrated a great dependence of the membrane performance on the TM:SA ratios of the grafted copolymer brushes. It was found that the characteristics of the surface charges of the membrane surfaces played a very important role in the non-biofouling performance, and the membrane surface with balanced positive and negative charges showed the best non-biofouling performance for the proteins and bacteria tested in this study.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp908194gDOI Listing

Publication Analysis

Top Keywords

copolymer brushes
20
non-biofouling performance
16
grafted copolymer
12
membrane surfaces
12
membrane
10
highly effective
8
effective non-biofouling
8
polymerization oppositely
8
oppositely charged
8
charged monomers
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!