Changes of physical properties and colloidal properties and microscopic picture of gall and liver bladder are detected in patients with virus hepatic B and C. A big number of chrystal elements (cholesterol chrystals gall acids, calcium belirubinates, microlytes) as well as cyllindic epithelium cells are revealed. The revealed changes degree isn't conncted with virus hepatitis ethyology, but proportionate to intensity of expressive changes in liver parenchyma.

Download full-text PDF

Source

Publication Analysis

Top Keywords

colloidal properties
8
picture gall
8
[physical colloidal
4
properties picture
4
gall patients
4
patients hepatitis
4
hepatitis background
4
background standard
4
standard diet]
4
diet] changes
4

Similar Publications

This work investigated the effects of curdlan gum-guar gum composite microgels (CG microgels) as a fat replacer on the gel properties, water distribution, and microstructures of pork meat batters, using techniques including rheometry, SEM, and LF-NMR. Between 55 °C and 80 °C, the addition of 30 % CG microgels enhanced the viscoelastic response of pork meat batters. Additionally, the CG microgels reduced cooking loss from 18.

View Article and Find Full Text PDF

Recent advances in nanoarchitectonics of two-dimensional nanomaterials for dental biosensing and drug delivery.

Adv Colloid Interface Sci

December 2024

Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China. Electronic address:

Two-dimensional (2D) nanoarchitectonics involve the creation of functional material assemblies and structures at the nanoscopic level by combining and organizing nanoscale components through various strategies, such as chemical and physical reforming, atomic and molecular manipulation, and self-assembly. Significant advancements have been made in the field, with the goal of producing functional materials from these nanoscale components. 2D nanomaterials, in particular, have gained substantial attention due to their large surface areas which are ideal for numerous surface-active applications.

View Article and Find Full Text PDF

The imbalance of redox homeostasis, especially the abnormal levels of reactive oxygen species (ROS), is a key obstacle in the bone repair process. Therefore, developing materials capable of scavenging ROS and modulating the microenvironment of bone defects is crucial for promoting bone repair. In this study, to endow poly(amino acids) (PAA) and its composites with anti-oxidative stress properties and enhanced osteogenic differentiation, we designed and prepared a calcium sulfate/calcium hydrogen phosphate/poly(amino acids) (PCDM) composite material with a thioether structure (-S-) in the molecular chain of PAA matrix through situ polymerization and physical blending method.

View Article and Find Full Text PDF

The rational design of engineered nanomaterials (NMs) with improved functionality and their increasing industrial application requires reliable, validated, and ultimately standardized characterization methods for their application-relevant, physicochemical key properties such as size, size distribution, shape, or surface chemistry. This calls for nanoscale (certified) reference materials (CRMs; RMs) and well-characterized reference test materials (RTMs) termed also quality control (QC) samples, assessed, e.g.

View Article and Find Full Text PDF

Covalent semiconductors of the carbon nitride family are among the most promising systems to realize "artificial photosynthesis", that is exploiting synthetic materials which use sunlight as an energy source to split water into its elements or converting CO into added value chemicals. However, the role of surface interactions and electronic properties on the reaction mechanism remain still elusive. Here, we use in-situ spectroscopic techniques that enable monitoring surface interactions in carbon nitride under artificial photosynthetic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!