Brain imaging has progressed over the centuries, from prehistory (surgical and sculptural empiricism), through the Middle Ages (dissection and drawings), the Renaissance (printing) and the 18th century (Spallanzani and ultrasounds), to the 19th century and the discovery of piezoelectricity by the Curie brothers and X-rays by Röntgen in 1895. The head had finally become transparent! The microscope was used by Ramon Y Cajal for histological and neuropathological brain studies. Marie Curie's discovery of radioisotopes paved the way for advances in in vivo neurophysiology. In the 20th century, technical progress accelerated with the advent of computed tomography. Injected contrast products were initially negative (air for ventriculography and pneumo-encephalography), and subsequently positive (intraventricular then intraarterial iodine, cerebral arteriography, increasingly hyperselective). Neurology and neurosurgery were followed by neuroradiology, stereotaxy, and interventional neuroradiology. G.N. Hounsfield's EMI CT scanner replaced silver salts crystals with computed pixels and voxels. Magnetic resonance imaging (MRI, 1981), which dispenses with the need for X-rays, is evolving at the same pace as computer science itself (Moore's Law) in the form of nanometric biophotonics for example. Diffusion MRI is providing precious information on neuroanatomy (axonal organization of the white matter and neuro-tractography, vascular anatomy), neurochemistry (MRS) and neurophysiology. Functional MRI of sensory activation and resting connectivity, the substrate of thought, is giving fascinating results. Functional stereotactic neurosurgery (for epilepsy, abnormal movements, etc.), stereotactic radiosurgery and endovascular interventional neuroradiology are among the latest approaches.
Download full-text PDF |
Source |
---|
Eur Stroke J
January 2025
Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Barcelona, Spain.
Introduction: The efficacy of intracranial rescue stenting (RS) following failed mechanical thrombectomy (MT) in large-vessel occlusion (LVO) stroke remains uncertain. We aimed to evaluate clinical outcomes of RS in patients with anterior circulation LVO stroke following unsuccessful MT.
Patients And Methods: We conducted a retrospective analysis using the Stroke Code Registry of Catalonia (January 2016-March 2022), a prospective, population-based registry including patients treated at 10 comprehensive stroke centers.
Stroke
January 2025
Department of Neurology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Neuroscience, the Netherlands. (Y.B.W.E.M.R.).
Noninferiority trials aim to prove that the efficacy, defined in terms of a key clinical outcome, of a new treatment is not meaningfully worse than that of an established active control. Noninferiority trials are important when other aspects of care can be improved, such as convenience, toxicity, costs, and safety (nonefficacy benefits). While the motivation for a noninferiority trial is straightforward, the design, execution, and interpretation of these trials is not a trivial task.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany.
Introduction: The chicken egg, with its compartments, is a widely used and popular animal model in experimental studies. This study aimed to quantify the volumes of the yolk/yolk sac, amniotic fluid, and chicken embryo using non-invasive ultra-high-field magnetic resonance imaging (UHF-MRI).
Materials And Methods: In total, 64 chicken eggs were examined using a 7 T UHF-MRI scanner, acquiring T2-weighted anatomical images of the entire egg from developmental day 1 to 16 (D1-D16).
In Vivo
December 2024
Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada;
Background/aim: Brain arteriovenous malformations (AVMs) are vascular malformations characterized by dysmorphic, aberrant vasculature. During previous surgeries of compact nidus brain AVMs (representing the majority of cases), we have observed a "shiny" plane between nidal and perinidal AVM vessels and the surrounding grey and white matter and hypothesized that preoperative neuroimaging of brain AVMs may show a neuroradiological correlate of these intraoperative observations.
Patients And Methods: We retrospectively reviewed and analyzed multiplanar and multisequence 3-Tesla magnetic resonance (3T MR) imaging in five consecutive brain AVMs with special attention on imaging characteristics of the brain-AVM interface, i.
Neuroradiology
December 2024
Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India.
Purpose: Objective information about the central auditory pathways in vestibular schwannoma can guide strategies for hearing rehabilitation and prognostication. This study aims to generate this information using diffusion tensor imaging (DTI).
Methods: This is a prospective observational single center study including 35 patients with vestibular schwannoma and 40 controls.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!