The use of scattering theory to infer atmospheric optical parameters requires the separation of absorption and scattering. It is demonstrated that a gradient flux relation exists that would provide the absorption (altitude) profile independently of scattering and irrespective of the state of polarization of the light field. The relation is derived for an atmosphere of plane-parallel or spherical geometry and for broad (continuum) and narrow (spectral line) frequency bands. The results are shown to hold, in particular, for the polarizations induced by both Rayleigh and Mie scattering in the field. Experimental setups are proposed for each of the cases considered of atmospheric geometry and frequency bandwidth. A final discussion considers the relevance of the present determination of the atmospheric absorption profile to the related problems of aerosol relative concentration, interpretation of radiometric and spectrometric data formed in the presence of scattering, clouds morphology, and radiative heat budget of the atmosphere.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.11.002249 | DOI Listing |
J Pharm Sci
January 2025
Department of Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA. Electronic address:
It is desirable but remains challenging to develop high drug load amorphous solid dispersions (ASDs) without compromising their quality attributes and bio-performance. In this work, we investigated the impacts of formulation variables, such as drug loading (DL) and polymer type, on dissolution behavior, diffusive flux, and in vitro drug absorption of ASDs of a high T compound, GDC-6893. ASDs with two polymers (HPMCAS and PVPVA) and various DLs (20 - 80%) were produced by spray drying and their drug-polymer miscibility was evaluated using solid-state nuclear magnetic resonance (ssNMR).
View Article and Find Full Text PDFClinics (Sao Paulo)
January 2025
Division of Rheumatology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil; Pediatric Rheumatology Unit, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil.
The objective of the present study was to evaluate biochemical quantitative metabolites in peripheral blood serum samples of Juvenile Idiopathic Arthritis (JIA) patients and healthy controls. A cross-sectional study included 33 post-pubertal JIA (21 without and 12 with Methotrexate (MTX) women and 28 age-matched healthy controls. Metabolomic analyses based on targeted electrospray ionization tandem mass spectrometry were used to identify possible biochemical pathway modifications in serum from JIA patients.
View Article and Find Full Text PDFInorg Chem
January 2025
NUPOM Lab, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
An understanding of proton transfer and migration at the surfaces of solid metal oxides and related molecular polyoxometalates (POMs) and metal alkoxides is crucial for the development of reactivity involving protonation or the absorption/binding of water. In this work, the hydrolysis of alkoxido Ti- and Sn-substituted Lindqvist [(MeO)MWO] (M = Ti, ; M = Sn, ) and Keggin [(MeO)MPWO] (M = Ti, ; M = Sn, ) type polyoxometalates (POMs) to hydroxido derivatives and subsequent condensation to μ-oxido species has been investigated in detail to provide insight into proton transfer reactions in these molecular metal oxide systems. Solution NMR studies revealed the dependence of reactions not only on the nature of the heteroatom (Ti or Sn) but also on the type of lacunary (W or PW) POM and also on the solvent (MeCN or DMSO).
View Article and Find Full Text PDFChemistryOpen
January 2025
Department of Materials Science, Solar Energy Research Center MIB-SOLAR and INSTM Milano-Bicocca Research Unit University of Milano-Bicocca,Via Cozzi 55, Milano, I-20125, Italy.
The rapid proliferation of internet-connected devices has transformed our daily habits prompting a shift towards greater sustainability in renewable energy for indoor applications. Among the various technologies available for obtaining energy in indoor conditions, Dye-Sensitized Solar Cells (DSSCs) stand out as the most promising due to their ability to efficiently convert ambient light into usable electricity. This study explores how the optimal matching of the UV-Vis absorption spectra of dyes commonly used in DSSCs with the emission profiles of indoor lamps allows for the enhanced efficiency of DSSC under indoor lighting.
View Article and Find Full Text PDFThermal engineering can be used to exploit absorption in a silicon optical cavity. In this work, the steady state profile of the heat generated by absorption is shaped and used to generate a dynamic heterostructure in a weakly confined silicon optical cavity. This is demonstrated in an edge defect photonic crystal optomechanical cavity to produce phonon lasing and sub-GHz optical pulsing with photon-phonon cooperativity of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!