An optical method to determine radial temperature and water vapor concentration profiles from a radiating combustion source is presented. Equations for radiance and transmissivity using the random band model with constant line widths and a delta-function distribution for line strengths are written for a hypothetical cylindrically symmetrical source. A numerical iterative technique of solution of these equations for temperature and water vapor concentration from measured radiance and transmittance profiles is presented, utilizing band model parameter data from the literature. Experimental data from a small hydrogen-air burner are used to verify the analytical treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.11.001200DOI Listing

Publication Analysis

Top Keywords

band model
12
temperature water
8
water vapor
8
vapor concentration
8
infrared band
4
model technique
4
technique combustion
4
combustion diagnostics
4
diagnostics optical
4
optical method
4

Similar Publications

Quantum chemical studies of carbon-based graphene-like nanostructures: from benzene to coronene.

J Mol Model

January 2025

Department of Chemistry, Federal Institute of Education, Science and Technology of Espírito Santo, Av. Min. Salgado Filho, Vila Velha, 29106-010, Espírito Santo, Brazil.

Context: This study presents quantum chemical analysis of 14 distinct carbon-based nanostructures (CBN), ranging from simple molecules, like benzene, to more complex structures, such as coronene, which serves as an exemplary graphene-like model. The investigation focuses on elucidating the relationships between molecular orbital (MO) energies, the energy band gaps, electron occupation numbers (eON), electronic conduction, and the compound topologies, seeking to find the one that approaches most of a graphene-like structure for in silico studies. Through detailed examination of molecular properties including chemical hardness and chemical potential, we demonstrate that the electronic exchange between orbitals is directly influenced by the structural topology of the carbon-based nanostructures, as the electron occupation numbers and the molecular orbital energies.

View Article and Find Full Text PDF

Context: To address the severe fuel crisis and environmental pollution, the use of lightweight metal materials, such as AZ alloy, represents an optimal solution. This study investigates the mechanical behavior and deformation mechanism of AZ alloys under uniaxial compressive using molecular dynamics (MD) simulations. The influence of various compositions, grain sizes (GSs), and temperatures on the compressive stress, the ultimate compressive strength (UCS), compressive yield stress (CYS), Young's modulus (E), shear strain, phase transformation, dislocation distribution, and total deformation length is thoroughly examined.

View Article and Find Full Text PDF

Presented herein is a DFT/TDDFT study of -tetrakis(4-hydroxyphenyl)porphyrin (H[THPP]) and its -deprotonated tetraanionic form; the latter was modeled as both a free tetraanion and with various counterions. Based on our calculations, the experimentally observed hyperporphyrin spectra are attributed to an admixture of phenol/phenoxide character into the a-type HOMO of tetraphenylporphyrin. The admixture results in an elevation of the orbital energy of the HOMO in relation to other frontier orbitals, which accounts for the observed spectral redshifts.

View Article and Find Full Text PDF

Objective: This meta-analysis elucidates the efficacy of the Transradial Band Device (TR Band) in minimizing complications like radial artery occlusion and hematoma, preserving heart health, and enhancing blood flow post-transradial catheterization.

Methods: A comprehensive literature search across databases including PubMed, Cochrane, and Embase examined the impact of radial artery compression techniques and decompression times on complications. Data from 13 studies were analyzed using R 4.

View Article and Find Full Text PDF

Contribution of Blood Biomarkers to Multiple Sclerosis Diagnosis.

Neurol Neuroimmunol Neuroinflamm

March 2025

Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.

Background And Objectives: Invasive procedures may delay the diagnostic process in multiple sclerosis (MS). We investigated the added value of serum neurofilament light chain (sNfL), glial fibrillary acidic protein (sGFAP), chitinase-3-like 1 (sCHI3L1), and the immune responses to the Epstein-Barr virus-encoded nuclear antigen 1 to current MS diagnostic criteria.

Methods: In this multicentric study, we selected patients from 2 prospective cohorts presenting a clinically isolated syndrome (CIS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!