Ancient animal microRNAs and the evolution of tissue identity.

Nature

Developmental Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany.

Published: February 2010

The spectacular escalation in complexity in early bilaterian evolution correlates with a strong increase in the number of microRNAs. To explore the link between the birth of ancient microRNAs and body plan evolution, we set out to determine the ancient sites of activity of conserved bilaterian microRNA families in a comparative approach. We reason that any specific localization shared between protostomes and deuterostomes (the two major superphyla of bilaterian animals) should probably reflect an ancient specificity of that microRNA in their last common ancestor. Here, we investigate the expression of conserved bilaterian microRNAs in Platynereis dumerilii, a protostome retaining ancestral bilaterian features, in Capitella, another marine annelid, in the sea urchin Strongylocentrotus, a deuterostome, and in sea anemone Nematostella, representing an outgroup to the bilaterians. Our comparative data indicate that the oldest known animal microRNA, miR-100, and the related miR-125 and let-7 were initially active in neurosecretory cells located around the mouth. Other sets of ancient microRNAs were first present in locomotor ciliated cells, specific brain centres, or, more broadly, one of four major organ systems: central nervous system, sensory tissue, musculature and gut. These findings reveal that microRNA evolution and the establishment of tissue identities were closely coupled in bilaterian evolution. Also, they outline a minimum set of cell types and tissues that existed in the protostome-deuterostome ancestor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981144PMC
http://dx.doi.org/10.1038/nature08744DOI Listing

Publication Analysis

Top Keywords

bilaterian evolution
8
ancient micrornas
8
conserved bilaterian
8
bilaterian
6
ancient
5
micrornas
5
evolution
5
ancient animal
4
animal micrornas
4
micrornas evolution
4

Similar Publications

De-novo Genome Assembly of the Edwardsiid Anthozoan Edwardsia elegans.

G3 (Bethesda)

January 2025

Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, North Carolina 28223.

Cnidarians (sea anemones, corals, hydroids, and jellyfish) are a key outgroup for comparisons with bilaterial animals to trace the evolution of genomic complexity and diversity within the animal kingdom, as they separated from most other animals 100s of millions of years ago. Cnidarians have extensive diversity, yet the paucity of genomic resources limits our ability to compare genomic variation between cnidarian clades and species. Here we report the genome for Edwardsia elegans, a sea anemone in the most specious genus of the family Edwardsiidae, a phylogenetically important family of sea anemones that contains the model anemone Nematostella vectensis.

View Article and Find Full Text PDF

Groups of orthologous genes are commonly found together on the same chromosome over vast evolutionary distances. This extensive physical gene linkage, known as macrosynteny, is seen between bilaterian phyla as divergent as Chordata, Echinodermata, Mollusca, and Nemertea. Here, we report a unique pattern of genome evolution in Bryozoa, an understudied phylum of colonial invertebrates.

View Article and Find Full Text PDF

miRNA-target complementarity in cnidarians resembles its counterpart in plants.

EMBO Rep

January 2025

Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.

microRNAs (miRNAs) are important post-transcriptional regulators that activate silencing mechanisms by annealing to mRNA transcripts. While plant miRNAs match their targets with nearly-full complementarity leading to mRNA cleavage, miRNAs in most animals require only a short sequence called 'seed' to inhibit target translation. Recent findings showed that miRNAs in cnidarians, early-branching metazoans, act similarly to plant miRNAs, by exhibiting full complementarity and target cleavage; however, it remained unknown if seed-based regulation was possible in cnidarians.

View Article and Find Full Text PDF

Beta-catenin is essential for diverse biological processes, such as body axis determination and cell differentiation, during metazoan embryonic development. Beta-catenin is thought to exert such functions through complexes formed with various proteins. Although β-catenin complex proteins have been identified in several bilaterians, little is known about the structural and functional properties of β-catenin complexes in early metazoan evolution.

View Article and Find Full Text PDF

An Ediacaran bilaterian with an ecdysozoan affinity from South Australia.

Curr Biol

December 2024

Earth and Planetary Sciences, University of California, Riverside, Riverside, CA 92521, USA.

Molecular clocks and Cambrian-derived metazoans strongly suggest a Neoproterozoic origin of many animal clades. However, fossil bilaterians are rare in the Ediacaran, and no definitive ecdysozoan body fossils are known from the Precambrian. Notably, the base of the Cambrian is characterized by an abundance of trace fossils attributed to priapulid worms, suggesting that major divisions among ecdysozoan groups occurred prior to this time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!