Study Design: Prospective clinical-radiographic study.
Objectives: To investigate the natural coupling behavior between frontal deformity correction and the simultaneous changes in thoracic kyphosis, and to examine how the postoperative thoracic sagittal realignment relates to this natural coupling behavior.
Summary Of Background Data: Restoration of the sagittal alignment is one of the fundamental goals in scoliosis correction surgery. It is generally achieved by rod precontouring intraoperatively. However, clinical studies suggested that postoperative sagittal realignment seems to be more affected by the inherent properties of the spine rather than the instrumentation or the surgical maneuver.
Methods: Ninety-eight idiopathic scoliosis patients with thoracic curves treated with one-stage posterior spinal fusion, using corrective segmental spinal instrumentation (hook-rod or pedicle screw-rod constructs) were investigated. Pre- and postoperative frontal and sagittal alignments were measured by standing anteroposterior and lateral radiographs. Preoperative frontal plane flexibility was assessed by the fulcrum bending radiograph in the standard manner, an additional radiograph was taken in the lateral plane, to assess how this frontal correction force affects sagittal plane alignment (lateral fulcrum bending radiograph).
Results: When thoracic frontal deformity was corrected under fulcrum bending, coupled changes in the thoracic kyphosis demonstrated 3 different patterns: thoracic kyphosis increased in 25 patients with a mean kyphosis of 9 degrees to 19 degrees, decreased in 45 with a mean of 34 degrees to 21 degrees and remained unchanged (within 3 degrees ) in 28 with a mean of 19 degrees to 18 degrees. After surgery, the direction of correction of thoracic kyphosis significantly correlated with the coupling patterns demonstrated on fulcrum bending radiographs (r = 0.579, P < 0.001). However, the actual postoperative thoracic kyphosis angle cannot be predicted by the preoperative lateral fulcrum bending radiograph. There was no statistically significant difference (P = 0.263) between using pedicle screws and hooks in achieving the additional correction beyond what was demonstrated on the lateral fulcrum bending radiographs.
Conclusion: Changes in thoracic kyphosis on fulcrum bending due to natural coupling of deformities are directed towards "self-normalization." There is no difference in the sagittal plane deformity correction with the use of hook-rod system or pedicle screw-rod constructs. This can be used as a guideline for exact preoperative rod contouring to reduce the stress on the bone-implant interface and the rate of postoperative failures. The findings also suggest that it is not how big or strong the implants are, but rather the natural curve behavior will at least partially determine the final sagittal outcome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/BRS.0b013e3181bb49f3 | DOI Listing |
Global Spine J
January 2025
Department of Orthopaedics, University Clinic Heidelberg, Heidelberg, Germany.
Study Design: Retrospective Cohort Study.
Objectives: Flexibility radiographs such as traction or bending radiographs are essential in preoperative imaging to assess for curve flexibility and to estimate the amount of operative correction in order to determine the type and length of instrumentation in growth-accompanying scoliosis treatment. Both traction and bending radiographs are controversially discussed in the literature.
J Pediatr Orthop
December 2024
Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN.
Background: Vertebral body tethering (VBT) is a nonfusion surgical treatment for scoliosis. Recent data have shown that intraoperative correction is critical for successful curve correction over time. This study aims to evaluate the relationship between preoperative, intraoperative, and postoperative correction.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Materials and Production, Aalborg University, 9220 Aalborg, Denmark.
: Spinal flexibility radiographs are important in adolescent idiopathic scoliosis (AIS) for clinical decision-making. In this study, we introduce a new method, the 'quantitatively controlled standing fulcrum side-bending' test (CSFS test). This is a feasibility study; we aimed to quantify the applied force and track the temporospatial changes in the spine specifically by measuring the continuous change in the Cobb angle (in degrees) during lateral bending.
View Article and Find Full Text PDFJ Clin Med
October 2024
Department of Orthopedic Surgery and Traumatology, Freiburg University Hospital, Albert Ludwigs University Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.
: The surgical treatment of adolescent idiopathic scoliosis (AIS) is influenced by factors such as skeletal maturity, curve magnitude, progression, and spinal flexibility. The assessment of spinal flexibility is crucial for surgical planning; supine bending radiographs are commonly used but there is no consensus on the optimal technique. Fulcrum bending radiographs (FBRs) have shown better prediction of post-surgery correction compared to supine bending radiographs.
View Article and Find Full Text PDFSpine Deform
January 2025
Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China.
Preoperative spine flexibility plays a key role in the intraoperative treatment course of severe scoliosis. In this cohort study, we examined the effects of 5 day inpatient scoliosis-specific exercise (SSE) on the spinal flexibility of patients with adolescent idiopathic scoliosis before surgery. A total of 65 patients were analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!