Background: Extensive invasion of the maternal decidua by extravillous trophoblast is considered of critical importance for implantation and placentation in humans, the decidua being viewed as a passively invaded tissue. In this study, we examined whether decidual cells might contribute to the highly dynamic processes at the fetal-maternal interface by active movement.

Methods: Primary endometrial stromal cells (ESCs) or the telomerase-immortalized ESC line, St-T1b, was induced to decidualize or was left undifferentiated. The AC-1M88 cell line served as a model for extravillous trophoblast cells. Motility of ESCs and trophoblast cells was monitored in transwell invasion and migration assays under co-culture conditions. Secretion of matrix metalloproteinases (MMPs) was assessed by gelatin zymography.

Results: AC-1M88 cell invasiveness was unaffected by the presence of ESCs, irrespective of their decidualization status. Surprisingly, decidualized ESCs were significantly more invasive than undifferentiated cells, and this invasive activity was strongly enhanced when cells were cultured in direct contact with AC-1M88 cells. Conditioned medium from AC-1M88 cells also stimulated migration and invasion of ESCs. Secretion of MMP-2 and -9 by ESCs was increased upon decidualization.

Conclusions: Enhanced motility and invasive capacity of decidualized ESCs in the presence of trophoblastic cells lead us to hypothesize a major contribution of the decidua in encapsulating the early conceptus and supporting subsequent trophoblast invasion. Our findings thus suggest a far more active role of the decidua in the implantation process than hitherto recognized.

Download full-text PDF

Source
http://dx.doi.org/10.1093/humrep/dep468DOI Listing

Publication Analysis

Top Keywords

cells
10
endometrial stromal
8
stromal cells
8
extravillous trophoblast
8
ac-1m88 cell
8
trophoblast cells
8
decidualized escs
8
ac-1m88 cells
8
escs
7
invasiveness human
4

Similar Publications

Discovery of noncovalent diaminopyrimidine-based Inhibitors for glioblastoma via a dual FAK/DNA targeting strategy.

Eur J Med Chem

January 2025

School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China. Electronic address:

Temozolomide, a widely used alkylating agent for glioblastoma treatment, faces significant challenges due to the development of resistance, which severely impacts patient survival. This underscores the urgent need for novel strategies to overcome this barrier. Focal adhesion kinase (FAK), an intracellular non-receptor tyrosine kinase, is highly expressed in glioblastoma cells and has been identified as a promising therapeutic target for anti-glioblastoma drug development.

View Article and Find Full Text PDF

Hypothesis for Molecular Evolution in the Pre-Cellular Stage of the Origin of Life.

Wiley Interdiscip Rev RNA

January 2025

Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China.

Life was originated from inorganic world and had experienced a long period of evolution in about 3.8 billion years. The time for emergence of the pioneer creations on Earth is debatable nowadays, and how the scenario for the prebiotic molecular interactions is still mysterious.

View Article and Find Full Text PDF

Dissociation of hydrogen and formation of water at the (010) and (111) surfaces of orthorhombic FeNbO4.

Chemphyschem

January 2025

University of Leeds, School of Chemistry, Woodhouse Lane, LS2 9JT, Leeds, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

The orthorhombic structure of FeNbO4, where the Fe and Nb cations are distributed randomly over the octahedral 4c sites, has shown excellent promise as an anode material in solid oxide fuel cells. We have used DFT+U-D2 calculations to explore the adsorption and dissociation of H2 molecules and the formation reaction of water at the (010) and (111) surfaces. Simulations of the surface properties confirmed that the bandgaps are significantly reduced compared to the bulk material.

View Article and Find Full Text PDF

The secrets of the Tübingen Castle kitchen: Friedrich Miescher and the discovery of nuclein, the cornerstone of DNA.

Gac Med Mex

January 2025

Departamento de Anatomía Patológica, Fundación Clínica Médica Sur; Departamento de Biología Celular y Tisular, Escuela de Medicina, Universidad Panamericana. Mexico City, Mexico.

In 1869, Friedrich Miescher, born in Basel, Switzerland, discovered a previously unknown phosphorus-rich substance in the nuclei of pus cells. Conducting his research in a laboratory set up in the kitchen of Tübingen's medieval castle in Germany, and under the guidance by Professor Felix Hoppe-Seyler, Miescher primarily focused on the composition of cell nuclei. He obtained nuclear material by washing pus cells from surgical bandages provided by a nearby hospital.

View Article and Find Full Text PDF

Chemerin is a new sex-specific target in aortic stenosis concomitant with diabetes regulated by the aldosterone/mineralocorticoid receptor axis.

Am J Physiol Heart Circ Physiol

January 2025

Cardiovascular Translational Research. Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain.

Diabetes mellitus (DM) increases the risk of aortic stenosis (AS) and worsens its pathophysiology in a sex-specific manner. Aldosterone/mineralocorticoid receptor (Aldo/MR) pathway participates in early stages of AS and in other diabetic-related cardiovascular complications. We aim to identify new sex-specific Aldo/MR targets in AS complicated with DM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!