The pathophysiology of airway diseases, such as asthma, is increasingly studied using transgenic mice and other mouse models of airway inflammation where allergen-induced changes in airway smooth muscle tone and mucous secretion is due, in part, to activation of preganglionic airway parasympathetic nerves. Ganglionic parasympathetic neurons located in the airways in several species, including humans, have anatomical and electrophysiological properties that limit transmission of preganglionic synaptic input. In this study, intracellular recordings were made from neurons in parasympathetic ganglia located on the trachea and bronchi of adult mice to determine electrophysiological properties associated with regulation of transmission of preganglionic input. Ganglionic neurons were characterized as having either tonic or phasic action potential accommodation patterns. Tonic neurons responded with repetitive action potentials sustained throughout a depolarizing current step, whereas phasic neurons generated one or a burst of action potential(s) and accommodated. A small subset displayed both patterns. Phasic neurons could be further differentiated as usually having either short- or long-duration afterhyperpolarizing potential following single and multiple action potentials. In most cells, stimulation of preganglionic nerves elicited one population of nicotinic fast excitatory postsynaptic potentials that were graded in amplitude, usually suprathreshold for action potential generation, and did not decrease in amplitude during higher frequency stimulation. Dye injection into the neurons revealed that dendrites were either absent or very short. These results provide evidence that in contrast to the characteristics of airway parasympathetic neurons reported in other species, including human, the electrophysiological and synaptic properties, and anatomical characteristics of mouse lower airway ganglionic neurons, are less associated with integration of presynaptic input.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3284314 | PMC |
http://dx.doi.org/10.1152/ajplung.00386.2009 | DOI Listing |
J Neuroinflammation
January 2025
Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA.
Chronic innate immune activation in the central nervous system (CNS) significantly contributes to neurodegeneration in progressive multiple sclerosis (MS). Using multiple experimental autoimmune encephalomyelitis (EAE) models, we discovered that NLRX1 protects neurons in the anterior visual pathway from inflammatory neurodegeneration. We quantified retinal ganglion cell (RGC) density and optic nerve axonal degeneration, gliosis, and T-cell infiltration in Nlrx1 and wild-type (WT) EAE mice and found increased RGC loss and axonal injury in Nlrx1 mice compared to WT mice in both active immunization EAE and spontaneous opticospinal encephalomyelitis (OSE) models.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China.
Purpose: This study aimed to investigate the role of SIRT4 in retinal protection, specifically its ability to mitigate excitotoxic damage to Müller glial cells through the regulation of mitochondrial dynamics and glutamate transporters (GLASTs).
Methods: A model of retinal excitatory neurotoxicity was established in mice. Proteins related to mitochondrial dynamics, GLAST, and SIRT4 were analyzed on days 0, 1, 3, and 5 following toxic injury.
Front Mol Neurosci
January 2025
Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany.
Hirschsprung's disease (HSCR) is characterized by congenital absence of ganglion cells in the gastrointestinal tract, which leads to impaired defecation, constipation and intestinal obstruction. The current diagnosis of HSCR is based on Rectal Suction Biopsies (RSBs), which could be complex in newborns. Occasionally, there is a delay in diagnosis that can increase the risk of clinical complications.
View Article and Find Full Text PDFJ Neurochem
January 2025
Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia.
GABA receptor (GABAR) activation is known to alleviate pain by reducing neuronal excitability, primarily through inhibition of high voltage-activated (HVA) calcium (Ca2.2) channels and potentiating G protein-coupled inwardly rectifying potassium (GIRK) channels. Although the analgesic properties of small molecules and peptides have been primarily tested on isolated murine dorsal root ganglion (DRG) neurons, emerging strategies to develop, study, and characterise human pluripotent stem cell (hPSC)-derived sensory neurons present a promising alternative.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China.
Degeneration of cochlear spiral ganglion neurons (SGNs) leads to irreversible sensorineural hearing loss (SNHL), as SGNs lack regenerative capacity. Although cochlear glial cells (GCs) have some neuronal differentiation potential, their specific identities remain unclear. This study identifies a distinct subpopulation, Frizzled10 positive (FZD10+) cells, as an important type of GC responsible for neuronal differentiation in mouse cochlea.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!