Maternal endotoxin exposure attenuates allergic airway disease in infant rats.

Am J Physiol Lung Cell Mol Physiol

Lung Biology Research Group, Physiology and Experimental Medicine Program, The Hospital for Sick Children Research Institute, Toronto.

Published: May 2010

Prenatal exposures to immunogenic stimuli, such as bacterial LPS, have shown to influence the neonatal immune system and lung function. However, no detailed analysis of the immunomodulatory effects of LPS on postnatal T helper cell differentiation has been performed. Using a rat model, we investigated the effect of prenatal LPS exposure on postnatal T cell differentiation and experimental allergic airway disease. Pregnant rats were injected with LPS on day 20 and 21 (term = 22 days). Some of the offspring were sensitized and challenged with ovalbumin. Positive control animals were placebo exposed to saline instead of LPS, whereas negative controls were sensitized with saline. Expression of T cell-related transcription factors and cytokines was quantified in the lung, and airway hyperresponsiveness was measured. Prenatal LPS exposure induced a T helper 1 (T(H)1) immune milieu in the offspring of rats [i.e., increased T-bet and T(H)1 cytokine expression while expression of T(H)2-associated transcription factors (GATA3 and STAT6) and cytokines was decreased]. Prenatal LPS exposure did not trigger T(H)17 cell differentiation in the offspring. Furthermore, prenatal LPS exposure reduced ovalbumin-induced (T(H)2-mediated) airway inflammation, eosinophilia, and airway responsiveness. Thus, in utero exposure to endotoxin promotes a T(H)1 immune environment, which suppresses the development of allergic airway disease later in life.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00399.2009DOI Listing

Publication Analysis

Top Keywords

prenatal lps
16
lps exposure
16
allergic airway
12
airway disease
12
cell differentiation
12
lps
8
transcription factors
8
th1 immune
8
exposure
6
airway
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!