Cholesteryl ester transfer protein (CETP) is involved in trafficking lipoprotein particles and neutral lipids between HDL and LDL and therefore is considered a valid target for treating dyslipidemic conditions and complications. Pharmacophore modeling and quantitative structure-activity relationship (QSAR) analysis were combined to explore the structural requirements for potent CETP inhibitors. Two pharmacophores emerged in the optimal QSAR equation (r(2)=0.800, n=96, F=72.1, r(2)(LOO) =0.775, r(2)(PRESS) against 22 external test inhibitors=0.707) suggesting the existence of at least two distinct binding modes accessible to ligands within CETP binding pocket. The successful pharmacophores were complemented with strict shape constraints in an attempt to optimize their receiver-operating characteristic (ROC) curve profiles. The validity of our modeling approach was experimentally established by the identification of several CETP inhibitory leads retrieved via in silico screening of the National Cancer Institute (NCI) list of compounds and an in house built database of drugs and agrochemicals. Two hits illustrated low micromolar IC(50) values: NSC 40331 (IC(50)=6.5 microM) and NSC 89508 (IC(50)=1.9 microM). Active hits were then used to guide synthetic exploration of a new series of CETP inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2009.12.070DOI Listing

Publication Analysis

Top Keywords

cholesteryl ester
8
ester transfer
8
transfer protein
8
pharmacophore modeling
8
qsar analysis
8
synthetic exploration
8
cetp inhibitors
8
cetp
5
discovery cholesteryl
4
protein inhibitors
4

Similar Publications

Background: Alzheimer's disease (AD) is a progressive neurodegenerative condition with rising prevalence due to the aging global population. Existing methods for diagnosing AD are struggling to detect the condition in its earliest and most treatable stages. One early indicator of AD is a substantial decrease in the brain's glucose metabolism.

View Article and Find Full Text PDF

High temperature ameliorates high-fat diet-induced obesity by promoting ceramide breakdown in skeletal muscle tissue.

Life Metab

October 2024

Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.

Obesity is considered an epidemic often accompanied by insulin resistance (IR). Heat treatment (HT) has been shown to prevent high-fat diet-induced IR in skeletal muscle, but the underlying mechanisms are poorly understood. In this study, we discovered that high temperature alleviated the hallmarks of obesity by promoting glycogen synthesis and lowering blood glucose levels in skeletal muscle tissue (SMT).

View Article and Find Full Text PDF

Exploring age and gender disparities in cardiometabolic phenotypes and lipidomic signatures among Chinese adults: a nationwide cohort study.

Life Metab

October 2024

Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.

Understanding sex disparities in modifiable risk factors across the lifespan is essential for crafting individualized intervention strategies. We aim to investigate age-related sex disparity in cardiometabolic phenotypes in a large nationwide Chinese cohort. A total of 254,670 adults aged 40 years or older were selected from a population-based cohort in China.

View Article and Find Full Text PDF

PBAE-PEG based lipid nanoparticles for lung cell-specific gene delivery.

Mol Ther

January 2025

Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA. Electronic address:

Exemplified by successful use in COVID-19 vaccination, delivery of modified mRNA encapsulated in lipid nanoparticles provides a framework for treating various genetic and acquired disorders. However, lipid nanoparticles that can deliver mRNA into specific lung cell types have not yet been established. Here, we sought whether poly(®-amino ester)s (PBAE) or PEGylated PBAE (PBAE-PEG) in combination with 4A3-SC8/DOPE/cholesterol/DOTAP lipid nanoparticles (LNP) could deliver mRNA into different types of lung cells in vivo.

View Article and Find Full Text PDF

Consumption of phytosterols is a nutritional strategy employed to reduce cholesterol absorption, but recent research shows that their biological activity might go beyond cholesterol reduction for the treatment of metabolic dysfunction-associated fatty liver disease (MAFLD), and novel phytosterol formulations, such as submicron dispersions, could improve these effects. We explored the therapeutic activity of phytosterols, either formulated as submicron dispersions of phytosterols (SDPs) or conventional phytosterol esters (PEs), in a mouse model of MAFLD. MAFLD was induced in mice by atherogenic diet (AD) feeding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!