The effect of NELL1 and bone morphogenetic protein-2 on calvarial bone regeneration.

J Oral Maxillofac Surg

Dental and Craniofacial Research Institute and Section of Oral and Maxillofacial Surgery, School of Dentistry, University of California, Los Angeles, CA, USA.

Published: February 2010

Purpose: Most craniofacial birth defects contain skeletal components that require bone grafting. Although many growth factors have shown potential for use in bone regeneration, bone morphogenetic proteins (BMPs) are the most osteoinductive. However, supraphysiologic doses, high cost, and potential adverse effects stimulate clinicians and researchers to identify complementary molecules that allow a reduction in dose of BMP-2. Because NELL1 plays a key role as a regulator of craniofacial skeletal morphogenesis, especially in committed chondrogenic and osteogenic differentiation, and a previous synergistic mechanism has been identified, NELL1 is an ideal molecule for combination with BMP-2 in calvarial defect regeneration. We investigated the effect of NELL1 and BMP-2 on bone regeneration in vivo.

Materials And Methods: BMP-2 doses of 589 and 1,178 ng were grafted into 5-mm critical-sized rat calvarial defects, as compared with 589 ng of NELL1 plus 589 ng of BMP-2 and 1,178 ng of NELL1 plus 1,178 ng of BMP-2, and bone regeneration was analyzed.

Results: Live micro-computed tomography data showed increased bone formation throughout 4 to 8 weeks in all groups but a significant improvement when the lower doses of each molecule were combined. High-resolution micro-computed tomography and histology showed more mature and complete defect healing when the combination of NELL1 plus BMP-2 was compared with BMP-2 alone at lower doses.

Conclusion: The observed potential synergy has significant value in the future treatment of patients with craniofacial defects requiring extensive bone grafting that would normally entail extraoral autogenous bone grafts or doses of BMP-2 in milligrams.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3113462PMC
http://dx.doi.org/10.1016/j.joms.2009.03.066DOI Listing

Publication Analysis

Top Keywords

bone regeneration
16
bone
9
bmp-2
9
bone morphogenetic
8
bone grafting
8
nell1 bmp-2
8
bmp-2 bone
8
micro-computed tomography
8
nell1
7
regeneration
5

Similar Publications

Bioactive surface-functionalized MXenes for biomedicine.

Nanoscale

January 2025

Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China.

MXenes, with their good biocompatibility, excellent photovoltaic properties, excellent physicochemical properties, and desirable bioactivity, have broad application prospects in the field of tissue regeneration. MXenes have been used in a wide range of applications including biosensing, bioimaging, tumour/infection therapy, bone regeneration and wound repair. By applying bioactive materials to modify the surface of MXenes, a series of multifunctional MXene-based nanomaterials can be designed for different biomedical applications to achieve better therapeutic effects or more desirable biological functions.

View Article and Find Full Text PDF

Background/purpose: Bone reconstruction in the maxillofacial region typically relies on autologous bone grafting, which presents challenges, including donor site complications and graft limitations. Recent advances in tissue engineering have identified highly pure and proliferative dedifferentiated fat cells (DFATs) as promising alternatives. Herein, we explored the capacity for osteoblast differentiation and the osteoinductive characteristics of extracellular vesicles derived from DFATs (DFAT-EVs).

View Article and Find Full Text PDF

Background/purpose: Early osseointegration of titanium (Ti) dental implants relies on the surface topography. Surface modification of Ti seeks to enhance bone regeneration around implants. Acid etching is the simple, less technique sensitive and cost-effective technique for surface treatment.

View Article and Find Full Text PDF

Beta-adrenergic receptor antagonist propranolol prevents bisphosphonate-related osteonecrosis of the jaw by promoting osteogenesis.

J Dent Sci

January 2025

State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Background/purpose: Bisphosphonate-related osteonecrosis of the jaw (BRONJ), a complication arising from the use of bisphosphonates (BPs), inflicts long-term suffering on patients. Currently, there is still a lack of effective treatments. This study aimed to explore the preventive effects of propranolol (PRO) on BRONJ in vitro and in vivo, given PRO's potential in bone health enhancement.

View Article and Find Full Text PDF

Background/purpose: Revascularization procedures are used over apexification to treat teeth with necrotic pulp tissues and incomplete root formation. Clinically, inducing proliferation, migration, matrix deposition, and differentiation of stem cells from apical papilla (SCAPs) are critical for pulp regeneration. The study aimed to elucidate the impact of bone morphogenetic protein-4 (BMP-4) on plasminogen activation molecules and the osteogenic/odontogenic differentiation of SCAPs, as well as understand the related signaling mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!