Objective: The analysis of long-latency event-related potentials (ERPs) is an important approach in the evaluation of certain cognitive functions, particularly selective attention, and in following their subsequent changes. Auditory P300 has previously been reported to be abnormal in patients with Parkinson's disease (PD). The aim of this study was to investigate whether acute deep brain stimulation (DBS) of the subthalamic nucleus (STN) itself can cause changes in the configuration of ERPs.
Method: Using a standard auditory oddball paradigm, we elicited ERPs in 10 patients with PD (in both DBS-ON and DBS-OFF conditions). The patients acted as their own controls. The N100, P200, N200 and P300 latencies, amplitudes and areas were compared between DBS-ON and DBS-OFF states. The motor reaction times were also recorded and compared between the two states.
Results: Comparison of the DBS-ON and DBS-OFF states revealed that neither amplitudes nor areas of the ERP components changed significantly; however, significant changes were observed in the latency of N100 potential when the target stimulus was applied, although there was no significant change in the latency of the P300 potential. No significant changes were noted in the latencies of the other observed ERP components. There was a marked improvement in the reaction time after the DBS electrode was turned ON.
Conclusion: Our data indicate that DBS might have varied impacts on electrophysiological parameters during the auditory oddball paradigm. Moreover, it may also worsen the orientation response as reflected by the increase in the N100 latency after the DBS electrode is turned ON.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.parkreldis.2009.12.006 | DOI Listing |
Sci Rep
December 2024
Brain and Mind Research Program, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.
The aim of this work was to study the effect of deep brain stimulation of the subthalamic nucleus (STN-DBS) on the subnetwork of subcortical and cortical motor regions and on the whole brain connectivity using the functional connectivity analysis in Parkinson's disease (PD). The high-density source space EEG was acquired and analyzed in 43 PD subjects in DBS on and DBS off stimulation states (off medication) during a cognitive-motor task. Increased high gamma band (50-100 Hz) connectivity within subcortical regions and between subcortical and cortical motor regions was significantly associated with the Movement Disorders Society - Unified Parkinson's Disease Rating Scale (MDS-UPDRS) III improvement after DBS.
View Article and Find Full Text PDFEur J Neurol
January 2025
Department of Neurology C, Parkinson Expert Center, Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon, Bron, France.
Background And Purpose: Disabling dystonia despite optimal medical treatment is common in Wilson disease (WD). No controlled study has evaluated the effect of deep brain stimulation (DBS) on dystonia related to WD. This study was undertaken to evaluate the efficacy of DBS on dystonia related to WD.
View Article and Find Full Text PDFBrain
September 2024
UT Southwestern Medical Center, Department of Neurological Surgery, Dallas, TX 75390, USA.
Recent progress in the study of Parkinson's disease (PD) has highlighted the pivotal role of beta oscillations within the basal ganglia-thalamo-cortical network in modulating motor symptoms. Predominantly manifesting as transient bursts, these beta oscillations are central to the pathophysiology of PD motor symptoms, especially bradykinesia. Our central hypothesis is that increased bursting duration in cortex, coupled with kinematics of movement, disrupts the typical flow of neural information, leading to observable changes in motor behavior in PD.
View Article and Find Full Text PDFBrain Stimul
August 2024
Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland. Electronic address:
Background: Enhancing slow waves, the electrophysiological (EEG) manifestation of non-rapid eye movement (NREM) sleep, could potentially benefit patients with Parkinson's disease (PD) by improving sleep quality and slowing disease progression. Phase-targeted auditory stimulation (PTAS) is an approach to enhance slow waves, which are detected in real-time in the surface EEG signal.
Objective: We aimed to test whether the local-field potential of the subthalamic nucleus (STN-LFP) can be used to detect frontal slow waves and assess the electrophysiological changes related to PTAS.
Neurotherapeutics
July 2024
Edward B. Singleton Department of Radiology, Baylor College of Medicine at Texas Children's Hospital, Houston, TX, USA.
Deep brain stimulation (DBS) targeting the ventral intermediate (Vim) nucleus of the thalamus is an effective treatment for essential tremor (ET). We studied 15 ET patients undergoing DBS to a major input/output tract of the Vim, the dentato-rubro-thalamic tract (DRTt), using resting state functional MRI (rsfMRI) to evaluate connectivity differences between DBS ON and OFF and elucidate significant regions most influential in impacting tremor control and/or concomitant gait ataxia. Anatomical/functional 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!