The performance of the new Kinetex-C(18) column was investigated. Packed with a new brand of porous shell particles, this column has an outstanding efficiency. Once corrected for the contribution of the instrument extra column volume, the minimum values of the reduced plate heights for a number of low molecular weight compounds (e.g., anthracene and naphtho[2,3-a]pyrene) were between 1.0 and 1.3, breaking the legendary record set 3 years ago by Halo-C(18) packed columns. The liquid-solid mass transfer of proteins (e.g., insulin and lyzozyme) is exceptionally fast on Kinetex-C(18) much faster than on the Halo-C(18) column. The different contributions of dispersion and mass transfer resistances to the column efficiency were determined and discussed. The possible reasons for this extremely high column efficiency are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2009.12.079DOI Listing

Publication Analysis

Top Keywords

shell particles
8
mass transfer
8
column efficiency
8
column
6
performance columns
4
columns packed
4
packed shell
4
particles kinetex-c18
4
kinetex-c18 performance
4
performance kinetex-c18
4

Similar Publications

Reactive Brownian Dynamics of Chemically Fueled Droplets: Roles of Attraction and Deactivation Modes.

J Phys Chem B

January 2025

Applied Theoretical Physics - Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany.

The self-assembly of biological membraneless organelles can be mimicked by active droplets resulting from chemically fueled microphase separation. However, how the nonequilibrium, transient structure of these active droplets can be controlled through the physicochemical input parameters is not yet well understood. In our work, a chemically fueled two-state chemical reaction and subsequent droplet growth and decay are modeled with a reactive Brownian dynamics simulation in two spatial dimensions.

View Article and Find Full Text PDF

Chicken eggshell waste is an alternative renewable source for quicklime production. Eggshell waste has received significant attention from researchers due to it being a potential source of bio-CaO, which not only drives the circular economy concept but also supports sustainable development. However, experiments on the production of bio-CaO are normally conducted in a small lab-scale furnace.

View Article and Find Full Text PDF

Novel insights into released hydrochar particle derived from typical high nitrogen waste biomass: Special properties, microstructure and formation mechanism.

Waste Manag

December 2024

Key Laboratory of Agro-Environment in Downstream of Yangtze Plain/Scientific Observing and Experimental Station of Arable Land Conservation (Jiangsu), Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China. Electronic address:

Article Synopsis
  • Hydrothermal carbonization (HTC) transforms waste biomass, particularly high nitrogen feedstocks like kitchen garbage and blue-green algae, into valuable resources, but the characteristics of small hydrochar particles remain underexplored.
  • Hydrochar particles show unique properties such as poor porosity, moderate pH, negative charge, and high hydrophobicity, which differ from the original hydrochar and secondary char derived from simpler biomasses.
  • The study identifies complex formation mechanisms through various chemical reactions in the hydrochar microparticles, highlighting their potential as soil fertilizers and decontaminants while emphasizing that effectiveness is influenced by HTC temperature and type of biomass used.
View Article and Find Full Text PDF

Aminoglycoside/Hexadecanoic Acid Complex Lamellar Core Nanoparticles.

ACS Omega

December 2024

Department of Clinical Medicine, Macquarie University, Sydney, NSW 2109, Australia.

An aminoglycoside, tobramycin sulfate (TbS), was complexed with hexadecanoic acid (HdA), resulting in a TbS/HdA complex with a repeat unit of 5.3 nm of a lamellar nanostructure. The nanometer-sized TbS/HdA particles were produced using poloxamer 188 as a dispersing agent.

View Article and Find Full Text PDF

Self-assembly of defined core-shell ellipsoidal particles at liquid interfaces.

J Colloid Interface Sci

December 2024

School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK; Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden; University of Münster, Institute of Physical Chemistry, Corrensstr. 28/30, 48149 Münster, Germany. Electronic address:

Hypothesis: Ellipsoidal particles confined at liquid interfaces exhibit complex self-assembly due to quadrupolar capillary interactions, favouring either tip-to-tip or side-to-side configurations. However, predicting and controlling which structure forms remains challenging. We hypothesize that introducing a polymer-based soft shell around the particles will modulate these capillary interactions, providing a means to tune the preferred self-assembly configuration based on particle geometry and shell properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!