Background: The identification of early markers of dementia is of increasing clinical importance. Recently, impaired mitochondrial function has emerged as a potential marker for age-related diseases and the maintenance of mtDNA copy number is essential for the preservation of mitochondrial function. We investigated the association between mtDNA copy number and cognitive function in elderly women.

Methods: A total of 107 apparently healthy elderly women were included. Cognitive abilities were assessed using the Mini-Mental State Examination (MMSE). We measured mtDNA copy number in peripheral leukocytes using real-time polymerase chain reaction (PCR) methods. Additionally, cardiometabolic risk factors and physical function were measured.

Results: MMSE scores were negatively correlated with the homeostasis model of insulin resistance (HOMA-IR) scores and positively correlated with gait speed as well as mtDNA copy number. After adjusting for age and level of education, the mean values of MMSE scores gradually increased with mtDNA copy number when divided into quartiles. Using step-wise multiple regression analysis, gait speed, mtDNA copy number, and age were determined to be the strongest predictors of MMSE score.

Conclusions: These data suggest that reduced mtDNA content may be a possible early marker of dementia, and this finding warrants further study in large, prospective investigations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cca.2010.01.024DOI Listing

Publication Analysis

Top Keywords

copy number
28
mtdna copy
24
number peripheral
8
cognitive function
8
healthy elderly
8
elderly women
8
mitochondrial function
8
mmse scores
8
gait speed
8
copy
7

Similar Publications

Background: Piperine, a secondary metabolite, affects the antihyperlipidemic effect of Ezetimibe (EZ). Hyperlipidemia is one of the independent risk factors for cardiovascular disorders such as atherosclerosis. Antihyperlipidemic drugs are essential for reducing cardiovascular events and patient mortality.

View Article and Find Full Text PDF

Background: Patients with lung adenocarcinoma (LUAD) receiving drug treatment often have an unpredictive response and there is a lack of effective methods to predict treatment outcome for patients. Dendritic cells (DCs) play a significant role in the tumor microenvironment and the DCs-related gene signature may be used to predict treatment outcome. Here, we screened for DC-related genes to construct a prognostic signature to predict prognosis and response to immunotherapy in LUAD patients.

View Article and Find Full Text PDF

In spite of the commendable global Pneumococcal Conjugate Vaccine (PCV) coverage in the last two decades, completion and timeliness of receipt of all the required doses are still below target. In Uganda, the 3 + 0 PCV regimen has been reported to have a steady decline in the completion rate and the reasons for the delayed completion are unidentified. This study aimed at assessing the influence of socio-demographic factors on delayed PCV completion among young children.

View Article and Find Full Text PDF

Genome-wide identification and functional roles relating to anthocyanin biosynthesis analysis in maize.

BMC Plant Biol

January 2025

Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China.

Background: Anthocyanin is an important class of water-soluble pigments that are widely distributed in various tissues of plants, and it not only facilitates diverse color changes but also plays important roles in various biological processes. Maize silk, serving as an important reproductive organ and displaying a diverse range of colors, plays an indispensable role in biotic resistance through its possession of anthocyanin. However, the copy numbers, characteristics, and expression patterns of genes involved in maize anthocyanin biosynthesis are not fully understood.

View Article and Find Full Text PDF

Correcting mitochondrial loss mitigates NOTCH1-related aortopathy in mice.

Nat Cardiovasc Res

January 2025

Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.

Loss-of-function mutations in NOTCH1 were previously linked to thoracic aortopathy, a condition for which non-surgical treatment options are limited. Based on clinical proteome analysis, we hypothesized that mitochondrial fusion and biogenesis in aortic smooth muscle cells (SMCs) are crucial for regulating the progression of NOTCH1-related aortopathy. Here we demonstrate that SMC-specific Notch1 knockout mice develop aortic pathology, including stiffening, dilation and focal dissection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!