Global ischemia arising during cardiac arrest or cardiac surgery causes highly selective, delayed death of hippocampal CA1 neurons. Exogenous estradiol ameliorates global ischemia-induced neuronal death and cognitive impairment in male and female rodents. However, the molecular mechanisms by which a single acute injection of estradiol administered after the ischemic event intervenes in global ischemia-induced apoptotic cell death are unclear. Here we show that acute estradiol acts via the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling cascade to protect CA1 neurons in ovariectomized female rats. We demonstrate that global ischemia promotes early activation of glycogen synthase kinase-3beta (GSK3beta) and forkhead transcription factor of the O class (FOXO)3A, known Akt targets that are related to cell survival, and activation of caspase-3. Estradiol prevents ischemia-induced dephosphorylation and activation of GSK3beta and FOXO3A, and the caspase death cascade. These findings support a model whereby estradiol acts by activation of PI3K/Akt signaling to promote neuronal survival in the face of global ischemia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836484PMC
http://dx.doi.org/10.1016/j.brainres.2010.01.046DOI Listing

Publication Analysis

Top Keywords

ca1 neurons
12
global ischemia
12
acute estradiol
8
ischemia-induced apoptotic
8
apoptotic cell
8
cell death
8
global ischemia-induced
8
estradiol acts
8
death
5
global
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!