Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Herpes simplex virus type 1 (HSV-1) undergoes acute infection in epithelial cells followed by establishment of latency in the neurons of trigeminal ganglia. The latent virus maintains a dormant state and can recurs spontaneously, suggesting transcriptional silencing and reactivation occur in neurons. Computer data mining identified a nuclear hormone response element (NRE), the binding site for the thyroid hormone receptor (TR) or other nuclear hormone receptor, in the promoter of HSV-1 thymidine kinase (TK). TRs are transcription factors whose activity is dependent on their ligand thyroid hormone (T(3); triiodothyronine). We hypothesize that TR and T(3) exert regulation on HSV-1 gene expression in neurons. A neuroblastoma cell line expressing the TR isoform beta (N2aTRbeta) was utilized for in vitro investigation. Results showed that liganded TR repressed TK promoter activity but unliganded TR relieved the inhibition. The mutagenesis study demonstrated that one nucleotide mutation at the NRE abolished the T(3)/TR-mediated regulation. N2aTRbeta cells treated with T(3) were suppressive to TK expression and virus release but the removal of T(3) de-repressed TK expression and increased virus release, confirmed by reverse transcriptase-polymerase chain reaction (RT-PCR) and plaque assays, respectively. Chromatin immunoprecipitation (ChIP) assays showed that TRs were enriched at TK NRE in the presence of T(3). Additional results demonstrated that hyper acetylated histone H4 and monomethylated H3 modified at lysine 9 (H3K9me1) were enriched at transcriptionally active TK promoters but were dissociated from the NRE by T(3)/TR. These results suggest that T(3) could regulate HSV-1 gene expression through its receptor via histone modification in cultured neuronal cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2878192 | PMC |
http://dx.doi.org/10.3109/13550280903552412 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!