Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The photophysics of the perylene radical cation (Pe(+)) was studied using the molecular mechanics-valence bond (MMVB) hybrid force field. Potential energy surfaces of the first three electronic states were investigated. Geometry optimizations of critical points-including conical intersections between the relevant electronic states-were performed using the MMVB analytical energy gradient for cations. No accessible planar conical intersection between the D(0) and D(1) states of Pe(+) was found; this is consistent with the experimentally observed D(1) lifetimes and the observation of D(1) emission from this cation in the condensed phase. Benchmark RASSCF and TD-DFT calculations support the reliability of the MMVB results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3278545 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!