Assembly of polyethylenimine-based magnetic iron oxide vectors: insights into gene delivery.

Langmuir

ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Sciences and Engineering, University of New South Wales, Sydney NSW 2052, Australia.

Published: May 2010

The use of a nonviral magnetic vector, comprised of magnetic iron oxide nanoparticles (MNP), polyethylenimine (PEI), and plasmid DNA, for transfection of BHK21 cells under a magnetic field is presented. Four different vector configurations were studied by systematically varying the mixing order of MNP, PEI, and DNA. The assembly of the vector has significant effects on its vector size, surface charge, cellular uptake, and level of gene expression. Mixing MNP with PEI first improved MNP stability, giving a narrow aggregate size distribution and positive surface charge at physiological pH, which in turn facilitated DNA binding onto MNP. The presence of serum in culture media improves vector dispersion and alters the surface charge of all vectors to negative charge, indicating serum protein adsorption. Cellular uptake was greater for larger vectors than the smaller vectors due to enhanced gravitational and magnetic aided sedimentation onto the cells. High MNP uptake by the cells, however, does not inevitably lead to increase gene expression efficiency. It can be shown that besides vector uptake, gene expression is affected by extracellular factors such as premature DNA release from MNP and DNA degradation by serum as well as intracellular factors such as vector lysosomal degradation, inability of DNA to detach from MNP, and cytotoxic effects of MNP at high uptake. Some of these extra- and intracellular properties are shown to be mediated by the presence of PEI.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la9041919DOI Listing

Publication Analysis

Top Keywords

surface charge
12
gene expression
12
mnp
9
magnetic iron
8
iron oxide
8
mnp pei
8
cellular uptake
8
vector
7
dna
6
magnetic
5

Similar Publications

A flexible cotton-based Ag/AgPO/MXene (APMX) ternary composite material was successfully synthesized, serving as a dual-function and reusable surface-enhanced Raman scattering (SERS) substrate for both sensitive detection and efficient organic dye degradation. The remarkable SERS properties of the composite can be attributed to the combined effects of electromagnetic enhancement by Ag nanoparticles (Ag NPs), charge transfer enhancement from AgPO, and the chemical enhancement mechanisms associated with MXene. When employed for the detection of crystal violet (CV), the material exhibits outstanding sensitivity, achieving a limit of detection (LOD) as low as 3.

View Article and Find Full Text PDF

Background: The spatial resolution of new, photon counting detector (PCD) CT scanners is limited by the size of the focal spot. Smaller, brighter focal spots would melt the tungsten focal track of a conventional X-ray source.

Purpose: To propose focal spot multiplexing (FSM), an architecture to improve the power of small focal spots and thereby enable higher resolution clinical PCD CT.

View Article and Find Full Text PDF

Characterizing molten corium-concrete interaction (MCCI) fuel debris in Fukushima reactors is essential to develop efficient methods for its removal. To enhance the accuracy of microscopic observation and focused ion beam (FIB) microsampling of MCCI fuel debris, we developed a three-dimentional FIB scanning electron microscopy (SEM) technique with a multiphase positional misalignment (MPPM) correction method. This system automatically aligns voxel positions, corrects contrast, and removes artifacts from a series of over 500 SEM images.

View Article and Find Full Text PDF

The limited transport of oxygen at the solid-liquid interface and the poor charge separation efficiency of single catalyst significantly impedes the generation of reactive oxygen species (ROS), thereby weakening the application potential of photocatalytic technology in water pollution control. Herein, a hollow porous photocatalytic aerogel sphere (calcium alginate/cellulose nanofibers (CA/CNF)) loaded BiOBr/TiC, combining a favourable mass transfer structure with effective catalytic centers was firstly presented. The floatability and hollow pore structure facilitated rapid O transfer via a triphase interface, thereby promoting the generation of ROS.

View Article and Find Full Text PDF

Porous carbon nanosheets integrated with graphene-wrapped CoO and CoNx as efficient bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries.

J Colloid Interface Sci

January 2025

CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China. Electronic address:

The development of advanced bifunctional oxygen electrocatalysts for the oxygen reduction reactions (ORR) and oxygen evolution reactions (OER) is crucial for the practical application of zinc-air batteries (ZABs). Herein, porous carbon nanosheets integrated with abundant graphene-wrapped CoO and CoNx (CoO/CoNx-C) were successfully fabricated through a simple one-step pyrolysis. With convenient porous channel and large accessible surface, abundant CoO/CoNx species and graphene wrapping structure, CoO/CoNx-C exhibited a half-wave potential of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!