A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dehydrogenation reactions of cyclic C(2)B(2)N(2)H(12) and C(4)BNH(12) isomers. | LitMetric

Dehydrogenation reactions of cyclic C(2)B(2)N(2)H(12) and C(4)BNH(12) isomers.

J Phys Chem A

Chemistry Department, University of Alabama, Shelby Hall, Box 870336, Tuscaloosa, Alabama 35487-0336, USA.

Published: February 2010

The energetics for different dehydrogenation pathways of C(2)B(2)N(2)H(12) and C(4)BNH(12) cycles were calculated at the B3LYP/DGDZVP2 and G3(MP2) levels with additional calculations at the CCSD(T)/complete basis set level. The heats of formation of the different isomers were calculated from the G3(MP2) relative energies and the heats of formation of the most stable isomers of c-C(2)B(2)N(2)H(6), c-C(2)B(2)N(2)H(12), and c-C(4)BNH(12) at the CCSD(T)/CBS including additional corrections together with the previously reported value for c-C(4)BNH(6). Different isomers were analyzed for c-C(2)B(2)N(2)H(x) and c-C(4)BNH(x) (x = 6 and 12), and the most stable cyclic structures were those with C-C-B-N-B-N and C-C-C-C-B-N sequences, respectively. The energetics for the stepwise loss of three H(2) were predicted, and the most feasible thermodynamic pathways were found. Dehydrogenation of the lowest energy c-C(2)B(2)N(2)H(12) isomer (6-H(12)) is almost thermoneutral with DeltaH(3dehydro) = 3.4 kcal/mol at the CCSD(T)/CBS level and -0.6 kcal/mol at the G3(MP2) level at 298 K. Dehydrogenation of the lowest energy c-C(4)BNH(12) isomer (7-H(12)) is endothermic with DeltaH(3dehydro) = 27.9 kcal/mol at the CCSD(T)/CBS level and 23.5 kcal/mol at the G3(MP2) level at 298 K. Dehydrogenation across the B-N bond is more favorable as opposed to dehydrogenation across the B-C, N-C, and C-C bonds. Resonance stabilization energies in relation to that of benzene are reported as are NICS NMR chemical shifts for correlating with the potential aromatic character of the rings.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp9102838DOI Listing

Publication Analysis

Top Keywords

c2b2n2h12 c4bnh12
8
heats formation
8
dehydrogenation lowest
8
lowest energy
8
kcal/mol ccsdt/cbs
8
ccsdt/cbs level
8
kcal/mol g3mp2
8
g3mp2 level
8
level 298
8
298 dehydrogenation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!