The need to isolate efficient heavy metal reducers for cost effective bioremediation strategy have resulted in the isolation of a potent molybdenum-reducing bacterium. The isolate was tentatively identified as Serratia sp. strain DRY5 based on the Biolog GN carbon utilization profiles and partial 16S rDNA molecular phylogeny. Strain DRY5 produced 2.3 times the amount of Mo-blue than S. marcescens strain Dr.Y6, 23 times more than E. coli K12 and 7 times more than E. cloacae strain 48. Strain DRY5 required 37 degrees C and pH 7.0 for optimum molybdenum reduction. Carbon sources such as sucrose, maltose, glucose and glycerol, supported cellular growth and molybdate reduction after 24 hr of static incubation. The most optimum carbon source that supported reduction was sucrose at 1.0% (w/v). Ammonium sulphate, ammonium chloride, glutamic acid, cysteine, and valine supported growth and molybdate reduction with ammonium sulphate as the optimum nitrogen source at 0. 2% (w/v). Molybdate reduction was optimally supported by 30 mM molybdate. The optimum concentration of phosphate for molybdate reduction was 5 mM when molybdate concentration was fixed at 30 mM and molybdate reduction was totally inhibited at 100 mM phosphate. Mo-blue produced by this strain shows a unique characteristic absorption profile with a maximum peak at 865 nm and a shoulder at 700 nm, Dialysis tubing experiment showed that 95.42% of Mo-blue was found in the dialysis tubing suggesting that the molybdate reduction seen in this bacterium was catalyzed by enzyme(s). The characteristics of isolate DRY5 suggest that it would be useful in the bioremediation ofmolybdenum-containing waste.
Download full-text PDF |
Source |
---|
Proc Natl Acad Sci U S A
November 2024
Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid e Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas, Madrid 28223, Spain.
The maturation and installation of the active site metal cluster (FeMo-co, FeSCMo--homocitrate) in Mo-dependent nitrogenase requires the protein product of the gene for production of the FeS cluster precursor (NifB-co, [FeSC]) and the action of the maturase complex composed of the protein products from the and genes. However, some putative diazotrophic bacteria, like sp. RS-1, lack the genes, suggesting an alternative pathway for maturation of FeMo-co that does not require NifEN.
View Article and Find Full Text PDFMolecules
October 2024
Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China.
leaves were converted to a porous graphitized carbon (GPLC) material via a high-temperature pyrolysis method by employing iron salt as a catalyst. A cobalt molybdate (CoMoO)-and-GPLC composite (CoMoO/GPLC) was then prepared by engineering CoMoO nanorods in situ, grown on GPLC. N adsorption-desorption isothermal curves and a pore size distribution curve verify that the proposed composite possesses a porous structure and a large specific surface area, which are favorable for charge and reactant transport and the rapid escape of O bubbles.
View Article and Find Full Text PDFBioresour Technol
December 2024
Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan. Electronic address:
Preservation of anammox granular sludge is important for anammox technology applications. Although previous studies have explored preservation methods, their long-term effects on microbial communities and functional genes remain underexplored. This study investigated the long-term preservation of anammox-hydroxyapatite (HAP) granules with storage durations of up to six years and examined the effects of different preservation methods.
View Article and Find Full Text PDFMar Pollut Bull
November 2024
Skidaway Institute of Oceanography, University of Georgia, 10 Ocean Science Circle, Savannah, GA 31411, USA.
After tin and mercury salts were added to estuarine microbial mats increasing amounts of methyltin and methylmercury, respectively, were formed over a 30 to 100 hour time period. Inhibition of the methylation by molybdate, a metabolic inhibitor of sulfate reduction, stimulation by pyruvate addition and lack of methylation by sterilized mats, were evidence that sulfate reducing bacteria within the mats were responsible for the tin and mercury methylation. Methyl mercury was formed from mercuric chloride and mercuric cysteine, but not from mercuric sulfide.
View Article and Find Full Text PDFFront Microbiol
July 2024
College of Resources and Environment, Southwest University, Chongqing, China.
In nature, methylmercury (MeHg) is primarily generated through microbial metabolism, and the ability of bacteria to methylate Hg(II) depends on both bacterial properties and environmental factors. It is widely known that, as a metabolic analog, molybdate can inhibit the sulfate reduction process and affect the growth and methylation of sulfate-reducing bacteria (SRB). However, after it enters the cell, molybdate can be involved in various intracellular metabolic pathways as a molybdenum cofactor; whether fluctuations in its concentration affect the growth and methylation of aerobic mercury methylating strains remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!