High-risk neuroblastoma is a rapidly growing tumor with a survival rate below 50%. A new treatment strategy is to administer chemotherapeutic drugs metronomically, i.e., at lower doses and frequent intervals. The aim of the study was to investigate the effects of GMX1777, a chemotherapeutic drug affecting cellular energy metabolism, in a mouse model for high-risk neuroblastoma. Female SCID mice were injected s.c. with MYCN-amplified human neuroblastoma cells and randomized to either treatment with GMX1777 or vehicle. In some animals, treatment was discontinued allowing tumor relapse. Treatment response was evaluated using the pediatric preclinical testing program (PPTP). Immunohistochemistry and qRT-PCR was performed on tumor cryosections to investigate the microscopic and molecular changes in tumors in response to GMX1777. Despite an increase in vessel density, tumor regression and a high group response score according to PPTP criteria was induced by GMX1777 without inducing drug resistance. Treatment resulted in inhibition of tumor cell proliferation, vessel maturation, reduced hypoxia, increased infiltration of MHC class II negative macrophages and expansion of the nonvascular stromal compartment. Decreased stromal VEGF-A and PDGF-B mRNA in response to treatment together with the structural data suggest a "deactivation" or "silencing" of the tumor stroma as a paracrine entity. In conclusion, GMX1777 was highly efficient against high-risk neuroblastoma xenografts through modulation of both the tumor cell and stromal compartment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ijc.25206 | DOI Listing |
Clin Nucl Med
January 2025
From the Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
A 7-year-old boy with high-risk neuroblastoma underwent 123I-MIBG SPECT/CT to evaluate the therapy response. The scan revealed abnormal 123I-MIBG uptake in the left basal ganglion, indicating the possibility of brain metastasis. Subsequent contrast-enhanced brain MRI, however, did not show any abnormal signal intensity in the left basal ganglion.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
Neuroblastoma (NB) remains associated with high mortality and low initial response rate, especially for high-risk patients, thus warranting exploration of molecular markers for precision risk classifiers. Through integrating multiomics profiling, we identified a range of hub genes involved in cell cycle and associated with dismal prognosis and malignant cells. Single-cell transcriptome sequencing revealed that a subset of malignant cells, subcluster 1, characterized by high proliferation and dedifferentiation, was strongly correlated with the hub gene signature and orchestrated an immunosuppressive tumor microenvironment (TME).
View Article and Find Full Text PDFCancer Res Commun
January 2025
Charité, Berlin, Germany.
Telomerase is reactivated by genomic TERT rearrangements in ~30% of diagnosed high-risk neuroblastomas. Dismal patient prognosis results if the RAS/MAPK/ALK signaling transduction network also harbors mutations. We present a liquid biopsy-based monitoring strategy for this particularly vulnerable pediatric patient subgroup, for whom real-time molecular diagnostic tools are limited to date.
View Article and Find Full Text PDFInt J Radiat Biol
January 2025
Departamento de Biología Celular, Universidad de Sevilla, Seville, Spain.
Purpose: A substantial proportion of children with high risk Neuroblastoma die within the first 5 years post-diagnosis despite the complex treatment applied. In the recent years, tumor environment has been revealed as key factor for cancer treatment efficacy. In this sense, non-tumorigenic Neural Crest progenitor cells from high risk patients, have been described as part of Neuroblastoma stroma, promoting tumor growth and contributing to mesenchyme formation.
View Article and Find Full Text PDFJ Pediatr Hematol Oncol
January 2025
Medical Faculty, University of Belgrade.
Nijmegen breakage syndrome (NBS) is a rare primary immunodeficiency disease due to a pathogenic variant in the NBN gene causing impaired DNA repair and increased predisposition for lymphoid malignancy. By contrast, solid tumors have been rarely reported. Neuroblastoma (NB) is a rare childhood solid tumor, associated with the worse outcome if MYCN oncogene is amplified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!