TG2 protects neuroblastoma cells against DNA-damage-induced stress, suppresses p53 activation.

Amino Acids

Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1720, 7th Ave. South, SC 981, Birmingham, AL 35294-0017, USA.

Published: July 2010

Tissue transglutaminase (TG2) is a multifunctional member of the transglutaminase (TGase) family (E.C.2.3.2.13), which catalyzes in a calcium-dependent reaction the formation of covalent bonds between the gamma-carboxamide groups of peptide-bound glutamine residues and various primary amines. Here, we investigated the role of TG2 in a response of the neuroblastoma SH-SY5Y cells to topoisomerase II inhibitor etoposide, known to trigger DNA-damage cell response. We found an early and transient (approximately 2 h) increase of the TG2 protein in SH-SY5Y cells treated with etoposide, along with the increase of phosphorylated and total levels of the p53 protein. Next, we showed that SH-SY5Y cells, which overexpress wild-type TG2 were significantly protected against etoposide-induced cell death. The TG2 protective effect was associated only with the transamidation active form of TG2, because overexpression the wild-type TG2, but not its transamidation inactive C277S form, resulted in a pronounced suppression of caspase-3 activity as well as p53 phosphorylation during the etoposide-induced stress. In addition, exacerbation of cell death with a significant increase in caspase-3 and p53 activation was observed in SH/anti-TG2 cells, in which expression of the endogenous TG2 protein has been greatly reduced by the antisense cDNA construct. Though the cell signaling and molecular mechanisms of the TG2-driven suppression of the cell death machinery remain to be investigated, our findings strongly suggest that TG2 plays an active role in the response of neuroblastoma cells to DNA-damage-induced stress by exerting a strong protective effect, likely by the suppression of p53 activation and p53-driven cell signaling events.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00726-009-0468-8DOI Listing

Publication Analysis

Top Keywords

p53 activation
12
sh-sy5y cells
12
cell death
12
tg2
10
neuroblastoma cells
8
cells dna-damage-induced
8
dna-damage-induced stress
8
response neuroblastoma
8
tg2 protein
8
protein sh-sy5y
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!