Tissue transglutaminase (TG2) is a multifunctional member of the transglutaminase (TGase) family (E.C.2.3.2.13), which catalyzes in a calcium-dependent reaction the formation of covalent bonds between the gamma-carboxamide groups of peptide-bound glutamine residues and various primary amines. Here, we investigated the role of TG2 in a response of the neuroblastoma SH-SY5Y cells to topoisomerase II inhibitor etoposide, known to trigger DNA-damage cell response. We found an early and transient (approximately 2 h) increase of the TG2 protein in SH-SY5Y cells treated with etoposide, along with the increase of phosphorylated and total levels of the p53 protein. Next, we showed that SH-SY5Y cells, which overexpress wild-type TG2 were significantly protected against etoposide-induced cell death. The TG2 protective effect was associated only with the transamidation active form of TG2, because overexpression the wild-type TG2, but not its transamidation inactive C277S form, resulted in a pronounced suppression of caspase-3 activity as well as p53 phosphorylation during the etoposide-induced stress. In addition, exacerbation of cell death with a significant increase in caspase-3 and p53 activation was observed in SH/anti-TG2 cells, in which expression of the endogenous TG2 protein has been greatly reduced by the antisense cDNA construct. Though the cell signaling and molecular mechanisms of the TG2-driven suppression of the cell death machinery remain to be investigated, our findings strongly suggest that TG2 plays an active role in the response of neuroblastoma cells to DNA-damage-induced stress by exerting a strong protective effect, likely by the suppression of p53 activation and p53-driven cell signaling events.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00726-009-0468-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!