The HPLC method for determination of imidaclothiz residue in cabbage and soil was developed, and its degradation and final residue were studied. The mean accuracies of the analytical method were 92.0-93.0% in soil and 88-93% in cabbage. The precision in cabbage ranged from 2.2% to 5.6%, and in soil from 2.0% to 5.0%. The minimum detectable amount of imidacothiz was 1 x 10(-10)g. The minimum detectable concentration was 0.0075 mg kg(-1) in cabbage and 0.003 mg kg(-1) in soil. The results showed that imidaclothiz degradation in soil and cabbage coincided with C = 0.0427e(-0.0923t), C = 0.739e(-0.279t). The half-lives were about 3.1 days in soil and 2.2 days in cabbage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00128-010-9941-z | DOI Listing |
Sci Rep
December 2024
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
Crop plants are severely affected by heavy metals (HMs), leading to food scarcity and economical loss. Lead (Pb) is outsourced by use of lead-based fertilizers, batteries, mining, smelting and metal processing. It significantly reduces growth, development and yield of crops cultivated on contaminated sites.
View Article and Find Full Text PDFGels
December 2024
College of Resources and Environment Sciences, Gansu Agricultural University, Lanzhou 730070, China.
Under the increasing severity of drought issues and the urgent need for the resourceful utilization of agricultural waste, this study aimed to compare the soil water retention properties of hydrogels prepared from Chinese cabbage waste (CW) and banana peel (BP) using grafting techniques with acrylic acid (AA) and acrylamide (AAm). Free radical polymerization was initiated with ammonium persulfate (APS), and N, N'-methylene bisacrylamide (MBA) served as the crosslinking agent to fabricate the grafted polymer hydrogels. The hydrogels were subjected to detailed evaluations of their water absorption, reusability, and water retention capabilities through indoor experiments.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
Petroleum hydrocarbon pollutants in soil are challenging to biodegrade, negatively impacting plant growth as well as the metabolic activity and community structure of soil microorganisms. Microorganisms immobilized by seed carriers can synergistically contribute to the remediation of petroleum hydrocarbon-contaminated soil. We prepared a rape seed carrier with immobilized microorganism by seed coating (with a mixture of diatomaceous earth and bentonite as fillers) and microbial immobilization.
View Article and Find Full Text PDFInt J Phytoremediation
December 2024
Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, China.
The combined microbial-plant remediation has increasingly been used to remediate heavy metal-contaminated soil. Some microorganisms could enhance phytoremediation efficiency by solubilizing heavy metal and improve plant growth by producing phytohormones in the heavy metal contaminated soils. In the present study, a strong cesium (Cs)-tolerant fungal strain was identified from soil microorganisms contaminated with Cs, and the enrichment conditions for Cs were optimized.
View Article and Find Full Text PDFJ Plant Physiol
December 2024
College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, PR China. Electronic address:
Nitrogen (N) is crucial for plant growth, available primarily as nitrate (NO) and ammonium (NH). However, its presence in soil is often limited, necessitating strategies to augment N availability. This study delves into the enigmatic interplay between NO and NH in fostering the growth of Brassica napus, an important oil crop worldwide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!