A story of high-temperature ferromagnetism in semiconductors.

Chem Soc Rev

Institute for Semiconductor and Solid State Physics, Johannes Kepler University, A-4040 Linz, Austria.

Published: February 2010

The comprehensive search for multifunctional materials has resulted in the discovery of semiconductors and oxides showing ferromagnetic features persisting to room temperature. In this tutorial review the methods of synthesis of these materials, as well as the application of element-specific nano-analytic tools, particularly involving synchrotron radiation and electron microscopy, are described and shown to reveal the presence of nano-scale phase separations. Various means to control the aggregation of magnetic cations are discussed together with the mechanisms accounting for ferromagnetism of either condensed or diluted magnetic semiconductors. Finally, the question of whether high temperature ferromagnetism is possible in semiconductors not containing magnetic ions is touched upon.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b905352mDOI Listing

Publication Analysis

Top Keywords

ferromagnetism semiconductors
8
story high-temperature
4
high-temperature ferromagnetism
4
semiconductors
4
semiconductors comprehensive
4
comprehensive search
4
search multifunctional
4
multifunctional materials
4
materials discovery
4
discovery semiconductors
4

Similar Publications

In this work, Ge vacancies and doping with transition metals (Mn and Fe) are proposed to modulate the electronic and magnetic properties of GeP monolayers. A pristine GeP monolayer is a non-magnetic two-dimensional (2D) material, exhibiting indirect gap semiconductor behavior with an energy gap of 1.34(2.

View Article and Find Full Text PDF

Ultrafast Laser-Induced Spin Dynamics in All-Semiconductor Ferromagnetic CrSBr-Phosphorene Heterostructures.

J Phys Chem Lett

January 2025

School of Physics, State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, China.

Ultrashort laser pulses are extensively used for efficient manipulation of interfacial spin injection in two-dimensional van der Waals (vdW) heterostructures. However, physical processes accompanying the photoinduced spin transfer dynamics on the all-semiconductor ferromagnetic vdW heterostructure remain largely unexplored. Here, we present a computational investigation of the femtosecond laser pulse induced purely electron-mediated spin transfer dynamics at a time scale of less than 50 fs in a vdW heterostructure.

View Article and Find Full Text PDF

Two-Dimensional Nonvolatile Valley Spin Valve.

ACS Nano

January 2025

Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0299, United States.

A spin valve represents a well-established device concept in magnetic memory technologies, whose functionality is determined by electron transmission, controlled by the relative alignment of magnetic moments of the two ferromagnetic layers. Recently, the advent of valleytronics has conceptualized a valley spin valve (VSV)─a device that utilizes the valley degree of freedom and spin-valley locking to achieve a similar valve effect without relying on magnetism. In this study, we propose a nonvolatile VSV (-VSV) based on a two-dimensional (2D) ferroelectric semiconductor where resistance of -VSV is controlled by a ferroelectric domain wall between two uniformly polarized domains.

View Article and Find Full Text PDF

Using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT), an experimental and theoretical study of changes in the electronic structure (dispersion dependencies) and corresponding modification of the energy band gap at the Dirac point (DP) for topological insulator (TI) [Formula: see text] have been carried out with gradual replacement of magnetic Mn atoms by non-magnetic Ge atoms when concentration of the latter was varied from 10% to 75%. It was shown that when Ge concentration increases, the bulk band gap decreases and reaches zero plateau in the concentration range of 45-60% while trivial surface states (TrSS) are present and exhibit an energy splitting of 100 and 70 meV in different types of measurements. It was also shown that TSS disappear from the measured band dispersions at a Ge concentration of about 40%.

View Article and Find Full Text PDF

Research on manipulating materials using light has garnered significant interest, yet examples of controlling electronic polarization in magnetic materials remain scarce. Here, the hysteresis of electronic polarization in the anti-ferromagnetic semiconductor FePS is demonstrated via light. Below the Néel temperature, linear dichroism (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!