Grating coupled compound resonators.

Appl Opt

Published: August 1971

A simple model, based on a simple boundary condition at the grating coupling surface, is constructed for a grating coupled cavity. The physical meaning of the boundary condition is discussed, and the gain factor and phase shift of the coupled resonator are studied in terms of the properties of the grating and the reflectivities of the mirrors.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.10.001919DOI Listing

Publication Analysis

Top Keywords

grating coupled
8
boundary condition
8
grating
4
coupled compound
4
compound resonators
4
resonators simple
4
simple model
4
model based
4
based simple
4
simple boundary
4

Similar Publications

Optical accordion lattices are routinely used in quantum simulation and quantum computation experiments to tune optical lattice spacings. Here, we present a technique for creating tunable optical lattices using binary-phase transmission gratings. Lattices generated using this technique have high uniformity, contrast, lattice spacing tunability, and power efficiencies.

View Article and Find Full Text PDF

In this paper, poly(diallyldimethylammonium chloride)(PDDA)/poly(sodium styrene sulfonate)(PSS) nanomembranes were deposited on the surface of long-period fiber gratings (LPFG) using the electrostatic layer-by-layer (LBL) assembly method, and the effect of NaCl on the modulation of LPFG double peaks by PDDA/PSS nanomembranes was investigated. The principle behind the emergence of double peaks was first explored using coupled mode theory, revealing that changes in the mode effective refractive index(RI) occur as the number of nanomembrane layers increases. The experimental results showed that under the conditions of PDDA with NaCl/PSS without NaCl and PDDA without NaCl/PSS with NaCl, double peaks do not appear in the spectra of LPFG as the number of thin film layers increases.

View Article and Find Full Text PDF

A high-sensitivity hot-wire anemometer is proposed for use with a cobalt-doped fiber (CDF) based long-period grating (LPG) heated optically by a 1480 nm laser. The CDF-LPG absorbs laser power and generates heat inherently, thereby eliminating the need for both metal coating and mode coupling devices that are usually required in optical fiber grating anemometers. The dip wavelength of the CDF-LPG shifts with airflow velocity due to the cooling effect of the airflow.

View Article and Find Full Text PDF

A diffractive waveguide based on surface relief gratings demonstrates significant potential for augmented reality owing to its ultra-thin and lightweight design, as well as its feasibility for mass production using nanoimprint technology. However, traditional waveguides suffer from low combiner efficiency. To address this issue, we propose what we believe to be a novel double-sided surface relief grating waveguide (abbreviated as double-sided waveguide) with a high combiner efficiency, which comprises a double-sided in-coupler, two single-sided turners, and a double-sided out-coupler.

View Article and Find Full Text PDF

A fused-silica three-port grating under TE-polarized normal incidence is designed and manufactured with improved diffraction efficiency (DE) and bandwidth. A physical explanation of the grating diffraction is provided using the simplified mode method (SMM), and parameters of the grating structure were optimized using rigorous coupled-wave analysis (RCWA). For a given set of optimized parameters, a transmitted three-port grating with an area of 170 ×170 was fabricated by scanning beam interference lithography (SBIL), and diffraction properties were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!