AI Article Synopsis

Article Abstract

When an in-line Fresnel hologram of an object such as a projectile in flight is made, the reconstruction comprises an image of the outside edge of the object superimposed upon a Fresnel diffraction pattern of the edge and an unmodulated portion of the reconstruction beam. When the reconstructed image is bandpass filtered, the only remaining significant contribution is that of a diffraction pattern which is symmetrical about an edgeline gaussian image of the object. The present paper discusses the application of this type of holography in accurately locating the edge of a large dynamic object, the position of which is not accurately known in any dimension. A theoretical and experimental analysis was performed to study the effects of motion, hologram size, film type, and practical limitations upon the attainable resolution in the reconstructed image. The bandlimiting effect of motion is used to relate the motion effected resolution limit of holography to that of photography. The study shows that an edgeline can be accurately located even at high velocity normal to the edge.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.10.001319DOI Listing

Publication Analysis

Top Keywords

diffraction pattern
8
reconstructed image
8
resolution factors
4
factors edgeline
4
edgeline holography
4
holography in-line
4
in-line fresnel
4
fresnel hologram
4
object
4
hologram object
4

Similar Publications

Water pollution, oxidative stress and the emergence of multidrug-resistant bacterial strains are significant global threats that require urgent attention to protect human health. Nanocomposites that combine multiple metal oxides with carbon-based materials have garnered significant attention due to their synergistic physicochemical properties and versatile applications in both environmental and biomedical fields. In this context, the present study was aimed at synthesizing a ternary metal-oxide nanocomposite consisting of silver oxide, copper oxide, and zinc oxide (ACZ-NC), along with a multi-walled carbon nanotubes modified ternary metal-oxide nanocomposite (MWCNTs@ACZ-NC).

View Article and Find Full Text PDF

Organic cocrystals have garnered significant research attention owing to their distinctive properties and promising applications. However, challenges in molecular structure design and control of intermolecular interactions continue to impede further advancements. In this study, two novel cocrystals were successfully formed from a series of synthesized benzotriazole derivatives.

View Article and Find Full Text PDF

Copper isotopes and their complexes are intensively studied due to their high potential for applications in radiodiagnosis and radiotherapy. Here, we study the Cu complex of 1,8-bis(2-hydroxybenzyl)-cyclam (HL), which forms an unexpected variety of isomers differing in the mutual orientation of the substituents on the cyclam nitrogen atoms, the protonation of the phenolate pendant, and the ligand denticity. The interconversion of the isomers is rather slow, which made the isolation, identification and investigation of some of the individual species possible.

View Article and Find Full Text PDF

This study presents the synthesis of a Cd(II) based hydrophobic three dimensional crystalline network material (CNM), [Cd(L)(LH)(bpe)], {L = {4,4'-(hexafluroisopropylidine)bis(benzoate)} and 1,2-di(4-pyridyl) ethylene (bpe)}, 1(Cd), by employing the slow-diffusion method. The three-dimensional structure of 1(Cd) was determined by single crystal X-ray diffraction and characterized by powder X-ray diffraction (PXRD), FT-IR spectroscopy and thermogravimetric analysis (TGA). Subsequently, post-synthetic modification of 1(Cd) with Cu(II) at room temperature led to the formation of isostructural 1(Cu) with partial substitution.

View Article and Find Full Text PDF

The influence of varying hydrogen content on the microstructure, mechanical properties, and fracture behavior of the metastable β titanium alloy TB8 after hydrogen charging has been investigated in this study. Several characterization methods, including optical microscopy (OM), x-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), were employed to comprehensively analyze the alloy. The results show that with the addition of hydrogen, hydrogen mainly accumulated at grain boundaries in the form of hydrides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!