Marinesco-Sjögren syndrome (MSS) is a rare autosomal recessive disorder. Mutation in the SIL1 gene accounts for the majority of MSS cases. However, some individuals with typical MSS without SIL1 mutations have been reported. In this study, we identified two novel mutations in a Japanese pedigree with MSS, one of which was an intragenic deletion not detected using the PCR-direct sequencing protocol. This family consisted of three affected siblings, an unaffected sibling and unaffected parents. We found a homozygous 5-bp deletion, del598-602(GAAGA), in exon 6 of all affected siblings by PCR. Thus, we expected that both parents would be heterozygous for the mutation. As expected, the father was heterozygous, whereas the mother demonstrated no mutations. We then carried out array comparative genomic hybridization and quantitative PCR analyses, and identified an approximately 58 kb deletion in exon 6 in the patients and mother. As a result, the mother was hemizygous for a 58-kb deletion. The affected siblings contained two mutations, a 5-bp and a 58-kb deletion, resulting in SIL1 gene dysfunction. It is possible that some reported cases of MSS without base alterations in the SIL1 gene are caused by deletions rather than locus heterogeneity.

Download full-text PDF

Source
http://dx.doi.org/10.1038/jhg.2009.141DOI Listing

Publication Analysis

Top Keywords

sil1 gene
16
novel mutations
8
japanese pedigree
8
marinesco-sjögren syndrome
8
58-kb deletion
8
sil1
5
mss
5
deletion
5
mutations sil1
4
gene
4

Similar Publications

Trazodone, dibenzoylmethane and tauroursodeoxycholic acid do not prevent motor dysfunction and neurodegeneration in Marinesco-Sjögren syndrome mice.

PLoS One

January 2025

Department of Neuroscience, Laboratory of Prion Neurobiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

There is no cure for Marinesco-Sjögren syndrome (MSS), a genetic multisystem disease linked to loss-of-function mutations in the SIL1 gene, encoding a BiP co-chaperone. Previously, we showed that the PERK kinase inhibitor GSK2606414 delays cerebellar Purkinje cell (PC) degeneration and the onset of ataxia in the woozy mouse model of MSS. However, GSK2606414 is toxic to the pancreas and does not completely rescue the woozy phenotype.

View Article and Find Full Text PDF

Background: Marinesco-Sjögren syndrome (MSS) is an autosomal recessive neuromuscular disorder that arises in early childhood and is characterized by congenital cataracts, myopathy associated with muscle weakness, and degeneration of Purkinje neurons leading to ataxia. About 60% of MSS patients have loss-of-function mutations in the SIL1 gene. Sil1 is an endoplasmic reticulum (ER) protein required for the release of ADP from the master chaperone Bip, which in turn will release the folded proteins.

View Article and Find Full Text PDF

Background: Inherited neuromuscular (NMD) and neurodegenerative diseases (NDD) belong to two distinct categories that disturb different components of the nervous system, leading to a variety of different symptoms and clinical manifestations. Both NMD and NDD are a heterogeneous group of genetic conditions. Genetic variations in the SGCA and SIL1 genes have been implicated in causing Limb Girdle Muscular Dystrophy (LGMD), a type of neuromuscular disorder, and Marinesco-Sjögren Syndrome (MSS) which is a neurodegenerative disorder.

View Article and Find Full Text PDF

Background: Differentially expressed genes/proteins (DEGs/DEPs) play critical roles in pulmonary tuberculosis (PTB) diagnosis and treatment. However, there is a scarcity of reports on DEGs/DEPs in lung tissues and blood samples in PTB patients.

Objective: We aim to identify the DEGs/DEPs in lung tissues and blood samples of PTB patients and investigate their roles in PTB.

View Article and Find Full Text PDF

SIL1 improves cognitive impairment in APP23/PS45 mice by regulating amyloid precursor protein processing and Aβ generation.

Zool Res

July 2024

Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400000, China.

SIL1, an endoplasmic reticulum (ER)-resident protein, is reported to play a protective role in Alzheimer's disease (AD). However, the effect of SIL1 on amyloid precursor protein (APP) processing remains unclear. In this study, the role of SIL1 in APP processing was explored both and .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!