Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rationale: Ventilator-induced lung injury (VILI) is common and serious and may be mediated in part by prostanoids. We have demonstrated increased expression of the early growth response-1 (Egr1) gene by injurious ventilation, but whether-or how-such up-regulation contributes to injury is unknown.
Objectives: We sought to define the role of Egr1 in the pathogenesis of VILI.
Methods: An in vivo murine model of VILI was used, and Egr1(+/+) (wild-type) and Egr1(-/-) mice were studied; the effects of prostaglandin E receptor subtype 1 (EP1) inhibition were assessed.
Measurements And Main Results: Injurious ventilation caused lung injury in wild-type mice, but less so in Egr1(-/-) mice. The injury was associated with expression of EGR1 protein, which was localized to type II cells and macrophages and was concentrated in nuclear extracts. There was a concomitant increase in expression of phosphorylated p44/p42 mitogen-activated protein kinases. The prostaglandin E synthase (mPGES-1) gene has multiple EGR1 binding sites on its promoter, and induction of mPGES-1 mRNA (as well as the prostanoid product, PGE2) by injurious ventilation was highly dependent on the presence of the Egr1 gene. PGE2 mediates many lung effects via EP1 receptors, and EP1 blockade (with ONO-8713) lessened lung injury.
Conclusions: This is the first demonstration of a mechanism whereby expression of a novel gene (Egr1) can contribute to VILI via a prostanoid-mediated pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1164/rccm.200908-1297OC | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!