Background: Interhemispheric inhibition might be a beneficial cortico-cortical interaction, but also might be maladaptive in people with neurological disorders. One recently revisited technique that has been shown to be effective in improving motor function in people with stroke using interhemispheric modulation is transcranial direct current stimulation (tDCS).

Objective: The aim of this study was to investigate the effects of tDCS combined with unilateral motor training with contralateral hand restraint on interhemispheric inhibition between the dominant and nondominant hemispheres of the brain and on motor performance in participants who were healthy.

Design: This was a double-blind, prospective, single-center study with participants who were healthy.

Methods: Twenty participants who were healthy were randomly assigned to receive either active or sham tDCS of the primary motor cortex (M1) bilaterally combined with unilateral motor training and contralateral hand restraint. A blinded rater assessed motor function and cortical excitability, including assessment of transcallosal inhibition (TCI).

Results: There was a larger increase in motor performance in the nondominant hand for the active tDCS group compared with the sham tDCS group. In addition, a decrease in cortical excitability in the dominant hemisphere and a decrease in TCI from the dominant to nondominant hemisphere were observed for the active tDCS group only. The TCI decrease in the active tDCS group was correlated with motor performance improvement for the nondominant hand. Limitations Limitations of this study included missing the effect of intracortical inhibition due to a floor effect, not using the optimal tDCS montage, and not being able to assess the effects of other variables such as gender due to the small sample size.

Conclusions: The results indicate that tDCS enhances the effects of unilateral motor training and contralateral hand restraint on motor function, and this benefit is associated with a different mechanism of action characterized by bihemispheric modulation in which TCI from the dominant to the nondominant hemisphere is decreased. Transcranial direct current stimulation might be a useful tool to enhance the motor effects of constraint-induced movement therapy.

Download full-text PDF

Source
http://dx.doi.org/10.2522/ptj.20090075DOI Listing

Publication Analysis

Top Keywords

motor training
16
tdcs group
16
motor
12
motor function
12
unilateral motor
12
training contralateral
12
contralateral hand
12
hand restraint
12
dominant nondominant
12
motor performance
12

Similar Publications

Monitoring and assessing the level of lower limb motor skills using the Biodex System plays an important role in the training of football players and in post-traumatic rehabilitation. The aim of this study was to build and test an artificial intelligence-based model to assess the peak torque of the lower limb extensors and flexors. The model was based on real-world results in three groups: hearing ( = 19) and deaf football players ( = 28) and non-training deaf pupils ( = 46).

View Article and Find Full Text PDF

: Asymptomatic patellar tendon abnormality (APTA) is considered a precursor to patellar tendinopathy (PT), but its pathogenesis remains unclear, especially regarding changes in muscle coordination. Therefore, it is essential to explore the muscle synergy patterns in individuals with APTA. This study recorded sEMG data during stop-jump tasks in 8 APTA and 8 healthy amateur male basketball players in a simulated basketball game.

View Article and Find Full Text PDF

Methods: We conducted a single-center, retrospective cohort study of French older adults. Participants with Mini-Mental State Examination (MMSE) ≥ 24 were recruited from a fall clinic in a geriatrics department. We recorded history of falls in the preceding 6 months, as well as Timed Up and Go test and mobility assessment at baseline and at 6- and 12-month follow-up.

View Article and Find Full Text PDF

Purpose Of The Review: In the United States, spinal cord injuries affect approximately 18,000 individuals annually, most commonly resulting from mechanical trauma. The consequent paraplegia severely impairs motor functions, creating an urgent need for innovative therapeutic strategies that extend beyond traditional rehabilitation and pharmacotherapy. This review assesses the effectiveness of Spinal Cord Stimulation (SCS) in improving motor function in patients with spinal cord injuries, with a particular focus on paraplegia.

View Article and Find Full Text PDF

Seipin Deficiency Impairs Motor Coordination in Mice by Compromising Spinal Cord Myelination.

Neuromolecular Med

January 2025

Department of Anatomy, School of Basic Medical Sciences, Shanxi Medical University, No 56, Xinjian Nan Road, Taiyuan, 030001, Shanxi, China.

The integrity of the myelin sheath of the spinal cord (SC) is essential for motor coordination. Seipin is an endoplasmic reticulum transmembrane protein highly expressed in adipose tissue and motor neurons in the SC. It was reported Seipin deficiency induced lipid dysregulation and neurobehavioral deficits, but the underlying mechanism, especially in SC, remains to be elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!