Dark-grown dicotyledonous seedlings form a hook-like structure at the top of the hypocotyl, which is controlled by the hormones auxin and ethylene. Hook formation is dependent on an auxin signal gradient, whereas hook exaggeration is part of the triple response provoked by ethylene in dark-grown Arabidopsis seedlings. Several other hormones and light are also known to be involved in hook development, but the molecular mechanisms that lead to the initial installation of an auxin gradient are still poorly understood. In this study, we aimed to unravel the cross-talk between auxin and ethylene in the apical hook. Auxin measurements, the expression pattern of the auxin reporter DR5::GUS and the localization of auxin biosynthesis enzymes and influx carriers collectively indicate the necessity for auxin biosynthesis and efficient auxin translocation from the cotyledons and meristem into the hypocotyl in order to support proper hook development. Auxin accumulation in the meristem and cotyledons and in the hypocotyl is increased approximately 2-fold upon treatment with ethylene. In addition, a strong ethylene signal leads to enhanced auxin biosynthesis at the inner side of the hook. Finally, mutant analysis demonstrates that the auxin influx carrier LAX3 is indispensable for proper hook formation, whereas the auxin influx carrier AUX1 is involved in the hook exaggeration phenotype induced by ethylene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.040790 | DOI Listing |
Adv Sci (Weinh)
January 2025
College of Horticulture, China Agricultural University, Beijing, 100193, China.
Plants exhibit remarkable regenerative abilities under stress conditions like injury, herbivory, and damage from harsh weather, particularly through adventitious root formation. They have sophisticated molecular mechanisms to recognize and respond to wounding. Jasmonic acid (JA), a wound hormone, triggers auxin synthesis to stimulate root regeneration.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, 38000, Pakistan.
The lactic acid bacterial (LAB) species have proven multifaceted roles in sustainable agriculture due to their biologically safe nature, making them eco-friendly. However, their plant growth-improving mechanisms in stressed and non-stressed conditions are still under consideration. Thus, the current work has been planned to evaluate the drought tolerance potential and plant growth-promoting (PGP) traits of Loigolactobacillus coryniformis BCH-4 in Zea mays L.
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, Karnataka, 560012, India.
In some mutualisms involving host plants, photoassimilates are provided as rewards to symbionts. Endophagous organisms often manipulate host plants to increase access to photoassimilates. Host manipulations by endophagous organisms that are also mutualists are poorly understood.
View Article and Find Full Text PDFMetabolites
January 2025
Department of Crop Science, Chungbuk National University, Cheong-ju 28644, Republic of Korea.
Drought stress has become one of the biggest concerns in threating the growth and yield of carrots ( L.). Recent studies have shed light on the physiological and molecular metabolisms in response to drought in the carrot plant; however, tissue-specific responses and regulations are still not fully understood.
View Article and Find Full Text PDFFront Microbiol
January 2025
Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, China.
Low phosphorus (P) use efficiency significantly impacts rice yields. An environmentally friendly approach to increase phosphorus absorption and utilization in rice involves the exploration of phosphorus-solubilizing fungal resources. This study aimed to isolate and characterize fungal strains from the rice rhizosphere and assess their phosphate solubilization capabilities, plant-growth-promoting (PGP) traits, and mechanisms involved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!