Nitric oxide synthase (NOS) catalyzes the NADPH- and O(2)-dependent oxidation of l-arginine (l-Arg) to nitric oxide (NO) and citrulline via an N(G)-hydroxy-l-arginine (NHA) intermediate. Mammalian NOSs have been studied quite extensively; other eukaryotes and some prokaryotes appear to express NOS-like proteins comparable to the oxygenase domain of mammalian NOSs. In this study, a recombinant NOS-like protein from the thermostable bacterium Geobacillus stearothermophilus (gsNOS) has been characterized using magnetic circular dichroism (MCD) and UV-Vis absorption spectroscopic techniques. Spectral comparisons of ligand complexes (with O(2), NO and CO) of substrate-bound (l-Arg or NHA) gsNOS, including the key oxyferrous complex studied at -50 degrees C in cryogenic mixed solvents, with analogous mammalian NOS complexes indicate overall spectroscopic similarities between gsNOS and mammalian NOSs. However, more detailed spectral comparisons reflect subtle structural differences between gsNOS and mammalian NOSs. This may be due to an incomplete tetrahydrobiopterin (BH(4))-binding site and low BH(4)-binding affinity, which may become even lower in the presence of cryosolvent in gsNOS. Although BH(4)-binding may be altered, gsNOS appears to require the pterin for NO production since formation of the stable ferric-NO product complex was only observed when excess BH(4) (>150muM) over gsNOS was present upon single turnover reaction in which O(2) was bubbled into dithionite-reduced NHA-bound protein solution at -35 degrees C or -50 degrees C.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2009.12.014DOI Listing

Publication Analysis

Top Keywords

mammalian noss
16
magnetic circular
8
circular dichroism
8
nos-like protein
8
geobacillus stearothermophilus
8
gsnos
8
stearothermophilus gsnos
8
nitric oxide
8
spectral comparisons
8
-50 degrees
8

Similar Publications

Article Synopsis
  • The study aimed to quantify the fracture tolerance of the distal fibula to improve understanding of ankle fractures and injury prediction tools.
  • It analyzed 143 ankle injury cases from a safety database, focusing on 120 instances that included fibula fractures, specifically the common Weber C type.
  • Testing on human-like models revealed various fracture patterns and tolerances, with most specimens failing under specific compression and bending forces, providing valuable data compared to other long bones.
View Article and Find Full Text PDF

Neurogenic-derived 6-nitrodopamine is the most potent endogenous modulator of the mouse urinary bladder relaxation.

Nitric Oxide

December 2024

Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil; Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.

6-Nitrodopamine (6-ND) modulates vas deferens, seminal vesicles, and corpus cavernosum contractility; however, its role on the lower urinary tract organs has not been evaluated. Investigations of isolated urinary bladders from wild-type (WT) mice revealed 6-ND release was comparable to that of dopamine and adrenaline, whereas noradrenaline was hardly detected, as assessed by liquid chromatography coupled to tandem mass spectrometry. In vitro, 6-ND induced concentration-dependent relaxations in carbachol pre-contracted bladders with high potency (pEC: 8.

View Article and Find Full Text PDF

Role of Nitric Oxide Synthases in Respiratory Health and Disease: Insights from Triple Nitric Oxide Synthases Knockout Mice.

Int J Mol Sci

August 2024

Department of Pharmacology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan.

The system of nitric oxide synthases (NOSs) is comprised of three isoforms: nNOS, iNOS, and eNOS. The roles of NOSs in respiratory diseases in vivo have been studied by using inhibitors of NOSs and NOS-knockout mice. Their exact roles remain uncertain, however, because of the non-specificity of inhibitors of NOSs and compensatory up-regulation of other NOSs in NOS-KO mice.

View Article and Find Full Text PDF

Nitric oxide synthases (NOSs), a family of flavo-hemoproteins with relatively rigid domains linked by flexible regions, require optimal FMN domain docking to the heme domain for efficient interdomain electron transfer (IET). To probe the FMN-heme interdomain docking, the magnetic dipole interactions between the FMN semiquinone radical (FMNH) and the low-spin ferric heme centers in oxygenase/FMN (oxyFMN) constructs of neuronal and inducible NOS (nNOS and iNOS, respectively) were measured using the relaxation-induced dipolar modulation enhancement (RIDME) technique. The FMNH RIDME data were analyzed using the mesoscale Monte Carlo calculations of conformational distributions of NOS, which were improved to account for the native degrees of freedom of the amino acid residues constituting the flexible interdomain tethers.

View Article and Find Full Text PDF

Meningiomas, the most prevalent primary benign intracranial tumors, often exhibit complicated levels of adhesion to adjacent normal tissues, significantly influencing resection and causing postoperative complications. Surgery remains the primary therapeutic approach, and when combined with adjuvant radiotherapy, it effectively controls residual tumors and reduces tumor recurrence when complete removal may cause a neurologic deficit. Previous studies have indicated that slip interface imaging (SII) techniques based on MR elastography (MRE) have promise as a method for sensitively determining the presence of tumor-brain adhesion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!