The process of bone healing requires the restoration of both anatomy and physiology, and there is a recognized need for innovative biomaterials that facilitate remodeling throughout this complex process. While porous scaffolds with a high degree of interconnectivity are known to accelerate cellular infiltration and new bone formation, the presence of pores significantly diminishes the initial mechanical properties of the materials, rendering them largely unsuitable for load-bearing applications. In this study, a family of non-porous composites has been fabricated by reactive compression molding of mineralized allograft bone particles (MBPs) with a biodegradable polyurethane (PUR) binder, which is synthesized from a polyester polyol and a lysine-derived polyisocyanate. At volume fractions exceeding the random close-packing limit, the particulated allograft component presented a nearly continuous osteoconductive pathway for cells into the interior of the implant. By varying the molecular weight of the polyol and manipulating the surface chemistry of the MBP via surface demineralization, compressive modulus and strength values of 3-6 GPa and 107-172 MPa were achieved, respectively. When implanted in bilateral femoral condyle plug defects in New Zealand White rabbits, MBP/PUR composites exhibited resorption of the allograft and polymer components, extensive cellular infiltration deep into the interior of the implant, and new bone formation at 6 weeks. While later in vivo timepoints are necessary to determine the ultimate fate of the MBP/PUR composites, these observations suggest that allograft bone/polymer composites have potential for future development as weight-bearing devices for orthopedic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2010.01.030 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States.
Purpose: The purpose of this study was to explore the therapeutic potential of the novel combination of Bacillus bacteriophage lysin (PlyB) and a synthetic TLR2/4 inhibitor (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine, OxPAPC) in the treatment of experimental Bacillus cereus endophthalmitis.
Methods: C57BL/6J mice were injected with 100 colony forming units (CFUs) Bacillus cereus to induce endophthalmitis. Two hours postinfection, groups of mice were treated with either PlyB, PlyB with OxPAPC, or the groups were left untreated to serve as a control.
Laryngocutaneous fistula is one of the most important complications encountered after larynx surgery. Stem cell therapy is a promising treatment approach for the future, both without the need for surgical methods and by assisting surgical methods to close the fistula. 30 female Downey Sprague rats were divided into 5 separate groups and pharyngocutaneous fistula was created.
View Article and Find Full Text PDFFASEB J
January 2025
Shirley Ryan AbilityLab, Chicago, Illinois, USA.
Following injury, skeletal muscle undergoes repair via satellite cell (SC)-mediated myogenic progression. In SCs, the circadian molecular clock gene, Bmal1, is necessary for appropriate myogenic progression and repair with evidence that muscle molecular clocks can also affect force production. Utilizing a mouse model allowing for inducible depletion of Bmal1 within SCs, we determined contractile function, SC myogenic progression and muscle damage and repair following eccentric contractile-induced injury.
View Article and Find Full Text PDFJ Dermatol
January 2025
Henry Ford Health Department of Dermatology, Detroit, Michigan, USA.
Itch is a prominent symptom in many cutaneous disorders, including atopic dermatitis (AD), prurigo nodularis, and psoriasis. Itch is also a common but overlooked concern in patients with hidradenitis suppurativa (HS). Currently, the mechanisms underlying itch in HS remain unclear.
View Article and Find Full Text PDFOncoimmunology
December 2025
Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA.
Immune checkpoint blockade (ICB) has significantly improved the survival for many patients with advanced malignancy. However, fewer than 50% of patients benefit from ICB, highlighting the need for more effective immunotherapy options. High-dose interleukin-2 (HD IL-2) immunotherapy, which is approved for patients with metastatic melanoma and renal cell carcinoma, stimulates CD8 T cells and NK cells and can generate durable responses in a subset of patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!