Previous studies have identified neurons throughout the rat limbic system that fire as a function of the animal's head direction (HD). This HD signal is particularly robust when rats locomote in the horizontal and vertical planes, but is severely attenuated when locomoting upside-down (Calton & Taube, 2005). Given the hypothesis that the HD signal represents an animal's sense of directional heading, we evaluated whether rats could accurately navigate in an inverted (upside-down) orientation. The task required the animals to find an escape hole while locomoting inverted on a circular platform suspended from the ceiling. In Experiment 1, Long-Evans rats were trained to navigate to the escape hole by locomoting from either one or four start points. Interestingly, no animals from the 4-start point group reached criterion, even after 29 days of training. Animals in the 1-start point group reached criterion after about six training sessions. In Experiment 2, probe tests revealed that animals navigating from either 1- or 2-start points utilized distal visual landmarks for accurate orientation. However, subsequent probe tests revealed that their performance was markedly attenuated when navigating to the escape hole from a novel start point. This absence of flexibility while navigating upside-down was confirmed in Experiment 3 where we show that the rats do not learn to reach a place, but instead learn separate trajectories to the target hole(s). Based on these results we argue that inverted navigation primarily involves a simple directional strategy based on visual landmarks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862784PMC
http://dx.doi.org/10.1016/j.nlm.2010.01.007DOI Listing

Publication Analysis

Top Keywords

escape hole
12
hole locomoting
8
point group
8
group reached
8
reached criterion
8
probe tests
8
tests revealed
8
visual landmarks
8
rats
5
directional learning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!