Prostaglandin D2 inhibits C2C12 myogenesis.

Mol Cell Endocrinol

School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.

Published: May 2010

Muscle repair following injury is preceded by a rapid inflammatory response with myoblasts being exposed to high levels of prostaglandin D(2) (PGD(2)) from invading leukocytes. We demonstrate that PGD(2) strongly inhibits C2C12 myogenesis as measured by cell fusion, creatine kinase activity and MyoD, myogenin and alpha-actin expression. Inhibition of myogenesis required micromolar PGD(2) concentrations and was independent of the known PGD(2) receptors DP1 and DP2. Unlike its cyclopentenone derivative 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)), PGD(2) did not generate toxic mitochondrial superoxide indicating that the inhibition of myogenesis is not mediated by generation of high concentrations of PGD(2)-derived 15d-PGJ(2). Thus our observations provide evidence for a novel PGD(2) signalling mechanism during muscle repair exclusively mediated by high inflammatory associated PGD(2) concentrations. These findings indicate a complex interplay between myoblasts and inflammatory cells during the repair process and have implications for the use of non-steroidal anti-inflammatory drugs in the treatment of muscle injuries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mce.2010.01.023DOI Listing

Publication Analysis

Top Keywords

inhibits c2c12
8
c2c12 myogenesis
8
muscle repair
8
inhibition myogenesis
8
pgd2 concentrations
8
pgd2
7
prostaglandin inhibits
4
myogenesis
4
myogenesis muscle
4
repair injury
4

Similar Publications

Inhibition of methionine aminopeptidase in C2C12 myoblasts disrupts cell integrity via increasing endoplasmic reticulum stress.

Biochim Biophys Acta Mol Cell Res

January 2025

Designing Future Health Initiative, Center for Promotion of Innovation Strategy, Head Office of Enterprise Partnerships, Tohoku University, Miyagi 980-8579, Japan.

Proteasome-dependent protein degradation and the digestion of peptides by aminopeptidases are essential for myogenesis. Methionine aminopeptidases (MetAPs) are uniquely involved in, both, the proteasomal degradation of proteins and in the regulation of translation (via involvement in post-translational modification). Suppressing MetAP1 and MetAP2 expression inhibits the myogenic differentiation of C2C12 myoblasts.

View Article and Find Full Text PDF

N6-methyladenosine (mA), a well-known post-transcriptional modification, is implicated in diverse cellular and physiological processes. However, much remains unknown regarding the precise role and mechanism of mA modification on muscle development. In this study, we make observation that the levels of mA and METTL3 are markedly elevated during the differentiation phase (DM) compared to the growth phase (GM) in both C2C12 and bovine myoblasts.

View Article and Find Full Text PDF

Pervasive RNA-binding protein enrichment on TAD boundaries regulates TAD organization.

Nucleic Acids Res

January 2025

Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China.

Mammalian genome is hierarchically organized by CTCF and cohesin through loop extrusion mechanism to facilitate the organization of topologically associating domains (TADs). Mounting evidence suggests additional factors/mechanisms exist to orchestrate TAD formation and maintenance. In this study, we investigate the potential role of RNA-binding proteins (RBPs) in TAD organization.

View Article and Find Full Text PDF

Fisetin Alleviates d-Galactose-Induced Senescence in C2C12 Myoblasts: Metabolic and Gene Regulatory Mechanisms.

J Proteome Res

January 2025

Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Skeletal muscle aging poses a major threat to the health and quality of life of elderly individuals. Fisetin, a natural polyphenolic compound, exhibits various biological activities; however, its role in preventing skeletal muscle cell aging is still unclear. This study aimed to elucidate the effects of fisetin on skeletal muscle aging using a d-galactose-induced C2C12 myoblast senescence model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!