Muscle repair following injury is preceded by a rapid inflammatory response with myoblasts being exposed to high levels of prostaglandin D(2) (PGD(2)) from invading leukocytes. We demonstrate that PGD(2) strongly inhibits C2C12 myogenesis as measured by cell fusion, creatine kinase activity and MyoD, myogenin and alpha-actin expression. Inhibition of myogenesis required micromolar PGD(2) concentrations and was independent of the known PGD(2) receptors DP1 and DP2. Unlike its cyclopentenone derivative 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)), PGD(2) did not generate toxic mitochondrial superoxide indicating that the inhibition of myogenesis is not mediated by generation of high concentrations of PGD(2)-derived 15d-PGJ(2). Thus our observations provide evidence for a novel PGD(2) signalling mechanism during muscle repair exclusively mediated by high inflammatory associated PGD(2) concentrations. These findings indicate a complex interplay between myoblasts and inflammatory cells during the repair process and have implications for the use of non-steroidal anti-inflammatory drugs in the treatment of muscle injuries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mce.2010.01.023 | DOI Listing |
Biochim Biophys Acta Mol Cell Res
January 2025
Designing Future Health Initiative, Center for Promotion of Innovation Strategy, Head Office of Enterprise Partnerships, Tohoku University, Miyagi 980-8579, Japan.
Proteasome-dependent protein degradation and the digestion of peptides by aminopeptidases are essential for myogenesis. Methionine aminopeptidases (MetAPs) are uniquely involved in, both, the proteasomal degradation of proteins and in the regulation of translation (via involvement in post-translational modification). Suppressing MetAP1 and MetAP2 expression inhibits the myogenic differentiation of C2C12 myoblasts.
View Article and Find Full Text PDFPhytochem Anal
January 2025
Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic.
Introduction: Ziziphora clinopodioides subsp. bungeana (Juz.) Rech.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China. Electronic address:
N6-methyladenosine (mA), a well-known post-transcriptional modification, is implicated in diverse cellular and physiological processes. However, much remains unknown regarding the precise role and mechanism of mA modification on muscle development. In this study, we make observation that the levels of mA and METTL3 are markedly elevated during the differentiation phase (DM) compared to the growth phase (GM) in both C2C12 and bovine myoblasts.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China.
Mammalian genome is hierarchically organized by CTCF and cohesin through loop extrusion mechanism to facilitate the organization of topologically associating domains (TADs). Mounting evidence suggests additional factors/mechanisms exist to orchestrate TAD formation and maintenance. In this study, we investigate the potential role of RNA-binding proteins (RBPs) in TAD organization.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
Skeletal muscle aging poses a major threat to the health and quality of life of elderly individuals. Fisetin, a natural polyphenolic compound, exhibits various biological activities; however, its role in preventing skeletal muscle cell aging is still unclear. This study aimed to elucidate the effects of fisetin on skeletal muscle aging using a d-galactose-induced C2C12 myoblast senescence model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!