In previous study, we have identified a nuclear localization signal (NLS) and a nucleolar localization signal (NoLS) in bovine herpesvirus-1 (BHV-1) infected cell protein 27 (BICP27), which targets predominantly to the nucleolus. Furthermore, the C-terminal 300 amino acid residues targets exclusively to the cytoplasm, suggesting that BICP27 might contain a nuclear export signal (NES). Amino acid sequence analysis revealed that there is a cluster of leucine-rich residues resembling a NES. Heterokaryon assays demonstrated that BICP27 is capable of shuttling between the nucleus and the cytoplasm of the BHV-1 infected, BICP27 and BICP27-EYFP transfected cells. Deletion mutant analysis revealed that this property is attributed to the leucine-rich NES 299LEELCAARRLSL310. Moreover, the functional NES could mediate transport of a monomer EYFP and a dimer EYFP to the cytoplasm. The nucleocytoplasmic shuttling of BICP27 and the nuclear export of NES-EYFP and NES-dEYFP could be blocked by leptomycin LMB, an inhibitor of the chromosomal region maintenance 1 (CRM1), which is the receptor for exportin-1-dependent nuclear export. In addition, the nuclear import of BICP27 was inhibited by a dominant negative Ran-GTP, namely Ran-GTP Q69L, indicating that BICP27 localized to the nucleus by means of a classic Ran dependent nuclear import mechanism. In conclusion, these results demonstrate that BICP27 shuttles between the nucleus and the cytoplasm by the functional NES and NLS through a CRM1-dependent nuclear export pathway and a Ran dependent nuclear import pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.virusres.2010.01.009 | DOI Listing |
Exp Neurobiol
December 2024
Department of Anatomy and Cell Biology, Dong-A University, College of Medicine, Busan 49201, Korea.
Peripheral neurodegenerative diseases induced by irreversible peripheral nerve degeneration (PND), such as diabetic peripheral neuropathy, have a high prevalence worldwide and reduce the quality of life. However, there is no agent effective against the irreversible PND. After peripheral nerve injury, Schwann cells play an important role in regulating PND.
View Article and Find Full Text PDFRNA
January 2025
MRC University of Glasgow Centre for Virus Research, University of Glasgow.
Cytoplasmic viruses interact intricately with the nuclear pore complex and nuclear import/export machineries, affecting nuclear-cytoplasmic trafficking. This can lead to the selective accumulation of nuclear RNA-binding proteins (RBPs) in the cytoplasm. Pioneering research has shown that relocated RBPs serve as an intrinsic defence mechanism against viruses, which involves RNA export, splicing and nucleolar factors.
View Article and Find Full Text PDFThe nuclear pore complex (NPC), a multisubunit complex located within the nuclear envelope, regulates RNA export and the import and export of proteins. Here we address the role of the NPC in driving thermal stress-induced 3D genome repositioning of ( ) genes in yeast. We found that two nuclear basket proteins, Mlp1 and Nup2, although dispensable for NPC integrity, are required for driving genes into coalesced chromatin clusters, consistent with their strong, heat shock-dependent recruitment to gene regulatory and coding regions.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil.
In the flower development study, we identified SCI1 (Stigma/style Cell-cycle Inhibitor 1), a regulator of cell proliferation. SCI1 interacts with NtCDKG;2 ( Cyclin-Dependent Kinase G;2), a homolog of human CDK11, which is responsible for RanGTP-dependent microtubule stabilization, regulating spindle assembly rate. In a Y2H screening of a cDNA library using NtCDKG;2 as bait, a RanBP1 (Ran-Binding Protein 1) was revealed as its interaction partner.
View Article and Find Full Text PDFJ Cell Biol
March 2025
Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL) , Heidelberg, Germany.
How cells establish the interphase genome organization after mitosis is incompletely understood. Using quantitative and super-resolution microscopy, we show that the transition from a Condensin to a Cohesin-based genome organization occurs dynamically over 2 h. While a significant fraction of Condensins remains chromatin-bound until early G1, Cohesin-STAG1 and its boundary factor CTCF are rapidly imported into daughter nuclei in telophase, immediately bind chromosomes as individual complexes, and are sufficient to build the first interphase TAD structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!