We describe and characterize a stromal cell independent culture system that efficiently supports pro-B cell to IgM+ B cell development with near normal levels of IgH and Igkappa diversity. Pro-B cells present in non-adherent bone marrow cells proliferate in the presence of IL-7 and subsequent to the removal of IL-7 and addition of BAFF, differentiate normally into IgM+ B cells. B cell development in vitro closely follows the patterns of development in vivo with culture-derived (CD) B cells demonstrating characteristic patterns of surface antigen expression and gene activation. IgM+ CD B cells respond to TLR stimulation by proliferation and differentiation into antibody-secreting cells. Self-reactive IgM+ B cell development is blocked in 3H9 IgH knockin mice; however, cultures of 3H9 IgH knockin pro-B cells yields high frequencies of "forbidden", autoreactive IgM+ B cells. Furthermore, serum IgG autoantibody exceeded that present in autoimmune, C4(-/-) animals following the reconstitution of RAG1(-/-) mice with IgM+ CD cells derived from BL/6 mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3835306PMC
http://dx.doi.org/10.1016/j.jim.2010.01.007DOI Listing

Publication Analysis

Top Keywords

cell development
16
igm+ cells
16
cells
9
stromal cell
8
cell independent
8
development vitro
8
igm+ cell
8
pro-b cells
8
3h9 igh
8
igh knockin
8

Similar Publications

Background: Granulosa cell proliferation and survival are essential for normal ovarian function and follicular development. Long non-coding RNAs (lncRNAs) have emerged as important regulators of cell proliferation and differentiation. Nuclear paraspeckle assembly transcript 1 (NEAT1) has been implicated in various cellular processes, but its role in granulosa cell function remains unclear.

View Article and Find Full Text PDF

Background: Viruses that infect prokaryotes (phages) constitute the most abundant group of biological agents, playing pivotal roles in microbial systems. They are known to impact microbial community dynamics, microbial ecology, and evolution. Efforts to document the diversity, host range, infection dynamics, and effects of bacteriophage infection on host cell metabolism are extremely underexplored.

View Article and Find Full Text PDF

Autophagy in brain tumors: molecular mechanisms, challenges, and therapeutic opportunities.

J Transl Med

January 2025

Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, China.

Autophagy is responsible for maintaining cellular balance and ensuring survival. Autophagy plays a crucial role in the development of diseases, particularly human cancers, with actions that can either promote survival or induce cell death. However, brain tumors contribute to high levels of both mortality and morbidity globally, with resistance to treatments being acquired due to genetic mutations and dysregulation of molecular mechanisms, among other factors.

View Article and Find Full Text PDF

Targeting lipid metabolism: novel insights and therapeutic advances in pancreatic cancer treatment.

Lipids Health Dis

January 2025

Emergency surgery Dapartment (Trauma center), The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, Henan, China.

Lipid metabolism in cancer is characterized by dysregulated lipid regulation and utilization, critical for promoting tumor growth, survival, and resistance to therapy. Pancreatic cancer (PC) is a highly aggressive malignancy of the gastrointestinal tract that has a dismal 5-year survival rate of less than 10%. Given the essential function of the pancreas in digestion, cancer progression severely disrupts its function.

View Article and Find Full Text PDF

The microenvironment cell index is a novel indicator for the prognosis and therapeutic regimen selection of cancers.

J Transl Med

January 2025

Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.

Background: It is worthwhile to establish a prognostic prediction model based on microenvironment cells (MCs) infiltration and explore new treatment strategies for triple-negative breast cancer (TNBC).

Methods: The xCell algorithm was used to quantify the cellular components of the TNBC microenvironment based on bulk RNA sequencing (bulk RNA-seq) data. The MCs index (MCI) was constructed using the least absolute shrinkage and selection operator Cox (LASSO-Cox) regression analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!