Stem cell therapies offer the potential for repair and regeneration of cardiac tissue. To facilitate evaluation of stem cell activity in vivo, we created novel dual-reporter mouse embryonic stem (mES) cell lines that express the firefly luciferase (LUC) reporter gene under the control of the cardiac sodium-calcium exchanger-1 (Ncx-1) promoter in the background of the 7AC5-EYFP mES cell line that constitutively expresses the enhanced yellow fluorescent protein (EYFP). We compared the ability of recombinant clonal cell lines to express LUC before and after induction of cardiac differentiation in vitro. In particular, one of the clonal cell lines (Ncx-1-43LUC mES cells) showed markedly enhanced LUC expression (45-fold increase) upon induction of cardiac differentiation in vitro. Further, cardiac differentiation in these cells was perpetuated over a period of 2-4 weeks after transplantation in a neonatal mouse heart model, as monitored by noninvasive bioluminescence imaging (BLI) and confirmed via postmortem immunofluorescence and histological assessments. In contrast, transplantation of undifferentiated pluripotent Ncx-1-43LUC mES cells in neonatal hearts did not result in detectable levels of cardiac differentiation in these cells in vivo. These results suggest that prior induction of cardiac differentiation in vitro enhances development and maintenance of a cardiomyocyte-like phenotype for mES cells following transplantation into neonatal mouse hearts in vivo. We conclude that the Ncx-1-43LUC mES cell line is a novel tool for monitoring early cardiac differentiation in vivo using noninvasive BLI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3121874 | PMC |
http://dx.doi.org/10.1089/scd.2009.0308 | DOI Listing |
J Cardiovasc Imaging
December 2024
Division of Cardiology, Department of Internal Medicine, Yeungnam University Medical Center, Daegu, Republic of Korea.
Background: Evaluation of regional left ventricle function using two-dimensional echocardiography (2DE) in patients with ischemic heart disease has limitations due to its low objectivity and qualitative nature. In addition, 2DE is limited because multiple acoustic windows are used to obtain the image, whereas three-dimensional echocardiography (3DE) uses a single window. This study aims to demonstrate the clinical utility of 3DE segmental volume analysis for evaluating regional wall motion abnormality (RWMA).
View Article and Find Full Text PDFCardiac regeneration involves the interplay of complex interactions between many different cell types, including cardiomyocytes. The exact mechanism that enables cardiomyocytes to undergo dedifferentiation and proliferation to replace lost cells has been intensely studied. Here we report a single nuclear RNA sequencing profile of the injured zebrafish heart and identify distinct cardiomyocyte populations in the injured heart.
View Article and Find Full Text PDFBackground: Loss of stromal interaction molecule 1 (STIM1) expression in smooth muscle cells protects against ischemia-reperfusion (I/R) injury. Whether and how decreased STIM1 expression in cardiomyocytes (CM) impacts cardiac remodeling in response to I/R injury remains unknown.
Objective: To examine mechanisms by which decreased CM-STIM1 expression in the adult heart modulates cardiac function before and after I/R injury.
Aging is a major risk factor for cardiovascular disease, the leading cause of death worldwide, and numerous other diseases, but the mechanisms of these aging-related effects remain elusive. Chronic changes in the microenvironment and paracrine signaling behaviors have been implicated, but remain understudied. Here, for the first time, we directly compare extracellular vesicles obtained from young and aged patients to identify therapeutic or disease-associated agents, and directly compare vesicles isolated from heart tissue matrix (TEVs) or plasma (PEVs).
View Article and Find Full Text PDFUnlabelled: Neural crest cells (NCCs) are a multipotent embryonic cell population of ectodermal origin that extensively migrate during early development and contribute to the formation of multiple tissues. Cardiac NCCs play a critical role in heart development by orchestrating outflow tract septation, valve formation, aortic arch artery patterning, parasympathetic innervation, and maturation of the cardiac conduction system. Abnormal migration, proliferation, or differentiation of cardiac NCCs can lead to severe congenital cardiovascular malformations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!